首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular mechanisms of cold acclimation are still largely unknown; however, it has been established that overwintering plants such as winter wheat increases freeze tolerance during cold treatments. In prokaryotes, cold shock proteins are induced by temperature downshifts and have been proposed to function as RNA chaperones. A wheat cDNA encoding a putative nucleic acid-binding protein, WCSP1, was isolated and found to be homologous to the predominant CspA of Escherichia coli. The putative WCSP1 protein contains a three-domain structure consisting of an N-terminal cold shock domain with two internal conserved consensus RNA binding domains and an internal glycine-rich region, which is interspersed with three C-terminal CX(2)CX(4)HX(4)C (CCHC) zinc fingers. Each domain has been described independently within several nucleotide-binding proteins. Northern and Western blot analyses showed that WCSP1 mRNA and protein levels steadily increased during cold acclimation, respectively. WCSP1 induction was cold-specific because neither abscisic acid treatment, drought, salinity, nor heat stress induced WCSP1 expression. Nucleotide binding assays determined that WCSP1 binds ssDNA, dsDNA, and RNA homopolymers. The capacity to bind dsDNA was nearly eliminated in a mutant protein lacking C-terminal zinc fingers. Structural and expression similarities to E. coli CspA suggest that WCSP1 may be involved in gene regulation during cold acclimation.  相似文献   

2.
小立碗藓冷驯化相关基因Pp-LIM only A的克隆与表达   总被引:2,自引:0,他引:2  
植物经历冷驯化后抗冻能力会有所提高.利用cDNA-AFLP方法从经过0℃冷驯化处理的小立碗藓中筛选到差异表达的Pp-LIM only A基因片段.cDNA和基因序列比较分析表明此基因含有7个内含子和8个外显子,编码由345个氨基酸残基组成的蛋白质,其中只含有一个LIM结构域,与动物蛋白质PDZ/LIM家族有很高的同源性,推测是一种新的植物LIM蛋白.实时定量PCR分析显示其在冷驯化6 h后表达量即开始明显增加,并随着冷驯化时间的延长表达量大幅度提高.Pp-LIM only A蛋白可能通过LIM结构域对细胞骨架的作用而影响了细胞膜的稳定性,本研究对其在抗冻中的作用作了进一步讨论.  相似文献   

3.
棉花GhDHAR2基因克隆、功能序列分析及原核表达   总被引:1,自引:0,他引:1  
通过RT-PCR方法从棉花纤维组织中克隆得到脱氢抗坏血酸还原酶基因GhDHAR2的cDNA,该基因开放阅读框为639 bp,编码212个氨基酸的蛋白质。同源性序列对比分析显示,GhDHAR2蛋白具有较高的保守性,具有典型的功能结构域,包括GST-N家族和GST-C-DHAR家族的功能结构域;进化树分析显示GhDHAR2和拟南芥AtDHAR2在进化关系上较近。将GhDHAR2基因连接到原核表达载体pET-28a中,将重组载体pET28a-GhDHAR2转入到表达菌株BL21(DE3)中,通过IPTG诱导表达出重组GhDHAR2蛋白,SDS-PAGE凝胶电泳分析显示重组蛋白大小约为28 kD,诱导表达的重组蛋白具有较高的DHAR活性。首次克隆了棉花GhDHAR2基因,通过结构域分析其可能的作用,并成功进行蛋白体外表达及酶活性分析。  相似文献   

4.
Overwintering crops such as winter wheat display a significant increase in freezing tolerance during periods of cold acclimation (CA). To gain a better understanding of the molecular mechanisms of CA, it is important to unravel the functions and regulations of CA-associated genes. Differential screening of a cDNA library constructed from cold acclimated crown tissue of winter wheat identified three novel CA-associated cDNA clones. Nucleotide sequence analysis showed that the clones encode a high mobility globular protein (HMGB1), a glycine-rich RNA-binding protein (TaGRP2), and a LEAD-11 dehydrin (DHN14). Accumulation of the three mRNAs during 14 days of CA was differentially regulated. In response to drought, and ABA, DHN14 mRNA rapidly accumulated while HMGB1 and TaGRP2 mRNA levels remained unchanged. The possible functions of each of these genes in cold acclimation are discussed. The text was submitted by the authors in English.  相似文献   

5.
A novel gene sequence, with two exons and one intron, encoding a metallothionein (MT) has been identified in durum wheat Triticum durum cv. Balcali85 genomic DNA. Multiple alignment analyses on the cDNA and the translated protein sequences showed that T. durum MT (dMT) can be classified as a type 1 MT. dMT has three Cys-X-Cys motifs in each of the N- and C-terminal domains and a 42-residue-long hinge region devoid of cysteines. dMT was overexpressed in Escherichia coli as a fusion protein (GSTdMT), and bacteria expressing the fusion protein showed increased tolerance to cadmium in the growth medium compared with controls. Purified GSTdMT was characterized by SDS- and native-PAGE, size exclusion chromatography, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. It was shown that the recombinant protein binds 4 +/- 1 mol of cadmium/mol of protein and has a high tendency to form stable oligomeric structures. The structure of GSTdMT and dMT was investigated by synchrotron x-ray solution scattering and computational methods. X-ray scattering measurements indicated a strong tendency for GSTdMT to form dimers and trimers in solution and yielded structural models that were compatible with a stable dimeric form in which dMT had an extended conformation. Results of homology modeling and ab initio solution scattering approaches produced an elongated dMT structure with a long central hinge region. The predicted model and those obtained from x-ray scattering are in agreement and suggest that dMT may be involved in functions other than metal detoxification.  相似文献   

6.
Christova PK  Christov NK  Imai R 《Planta》2006,223(6):1207-1218
A novel cold-induced cystatin cDNA clone (TaMDC1) was isolated from cold acclimated winter wheat crown tissue by using a macroarray-based differential screening method. The deduced amino acid sequence consisted of a putative N-terminal secretory signal peptide of 37 amino acids and a mature protein (mTaMDC1) with a molecular mass of 23 kDa. The mTaMDC1 had a highly conserved N-terminal cystatin domain and a long C-terminal extension containing a second region, which exhibited partial similarity to the cystatin domain. The recombinant mTaMDC1 was purified from Escherichia coli and its cysteine proteinase inhibitory activity against papain was analyzed. The calculated Ki value of 5.8×10−7 M is comparable to those reported for other phytocystatins. Northern and western blot analyses showed elevated expression of TaMDC1 mRNA and protein during cold acclimation of wheat. In addition to cold, accumulation of the TaMDC1 message was induced by other abiotic stresses including drought, salt and ABA treatment. Investigation of in vitro antifungal activity of mTaMDC1 showed strong inhibition on the mycelium growth of the snow mold fungus Microdochium nivale. Hyphae growth was totally inhibited in the presence of 50 μg/ml mTaMDC1 and morphological changes such as swelling, fragmentation and sporulation of the fungus were observed. The mechanisms of the in vitro antifungal effects and the possible involvement of TaMDC1 in cold induced snow mold resistance of winter wheat are discussed.  相似文献   

7.
Overwintering crops such as winter wheat display significant increase in freezing tolerance during a period of cold acclimation (CA). To gain better understanding of molecular mechanisms of CA, it is important to unravel functions and regulations of CA-associated genes. Differential screening of a cDNA library constructed from cold acclimated crown tissue of winter wheat identified three novel CA-associated cDNA clones. Nucleotide sequence analysis showed that the clones encode a high mobility globular protein (HMGB1), a glycine-rich RNA-binding protein (TaGRP2), and a LEA D-11 dehydrin (DHN14). Accumulation of the three mRNAs during 14 days of CA was differentially regulated. In response to drought, and ABA, DHN14 mRNA rapidly accumulated while HMGB1 and TaGRP2 mRNA levels remained unchanged. The possible functions of each of these genes in cold acclimation are discussed.  相似文献   

8.
Cold acclimation in plants is a polygenic phenomenon involving increased expression of several genes. The gene products participate either directly or indirectly towards increasing cold tolerance. Evidence of proteins having a direct effect on cold tolerance is emerging but limited. With isolated protoplasts from warm-grown kale (Brassica oleracea) as a model system, we tested protein fractions from winter bittersweet nightshade, Solanum dulcamara, stems for the presence of proteins that have a cryoprotective effect. Purification of one such fraction resulted in isolation of a 25 kDa protein. N-terminal Edman degradation amino acid sequence analysis showed that it has high homology to osmotin and osmotin-like proteins. When added to warm-grown protoplasts, it increased the cryosurvival of frozen-thawed protoplasts by 24% over untreated or BSA-treated controls at –8 °C. A cDNA library which was made in November from stems and leaves of S. dulcamara was successfully screened for the corresponding cDNA clone. The deduced amino acid sequence indicated that the protein consists of 206 amino acid residues including a N-terminal signal sequence and a putative C-terminal propeptide. The mature protein, without the N-terminal signal sequence, was expressed in Escherichia coli. The partially purified protein in the supernatant fraction of the culture medium had cryoprotective activity.  相似文献   

9.
Kinesin-like calmodulin-binding protein (KCBP), a novel kinesin-like protein from plants, is unique among kinesins and kinesin-like proteins in having a calmodulin-binding domain adjacent to its motor domain. KCBP localizes to mitotic microtubule (MT) arrays including the preprophase band, the spindle apparatus, and the phragmoplast, suggesting a role for KCBP in establishing these MT arrays by bundling MTs. To determine if KCBP bundles MTs, we expressed C-terminal motor and N-terminal tail domains of KCBP, and used the purified proteins in MT bundling assays. The 1.5 C protein with the motor and calmodulin-binding domains induced MT bundling. The 1.5 C-induced bundles were dissociated in the presence of Ca(2+)/calmodulin. Similar results were obtained with a 1.4 C protein, which lacks much of the coiled-coil region present in 1.5 C protein and does not form dimers. The N-terminal tail of KCBP, which contains an ATP-independent MT binding site, is also capable of bundling MTs. These results, together with the KCBP localization data, suggest the involvement of KCBP in establishing mitotic MT arrays during different stages of cell division and that Ca(2+)/calmodulin regulates the formation of these MT arrays.  相似文献   

10.
A new CBF gene was cloned from Capsella bursa-pastoris(shepherd's purse) by rapid amplification of cDNA ends (RACE). The full-length cDNA of C. bursa-pastoris CBF gene (designated as Cbcbf) was 1034 bp long and contained a 657 bp open reading frame (ORF) encoding a putative DRE/CRT (LTRE)-binding protein of 219 amino acids. The predicted CbCBF protein was found to have a potential nuclear localization signal (NLS) in its N-terminal region followed by an AP2 DNA-binding motif and an acidic C-terminal half that might act as an activator domain. Bioinformatic analysis revealed that Cbcbf strongly resembled other CBF genes from Arabidopsis thaliana (cbf1, cbf2, cbf3) and Brassica napus (Bncbf5, Bncbf 7, Bncbf16 and Bncbf17). Subsequent cold acclimation assay showed that Cbcbf was relevant to cold acclimation. Our study implies that Cbcbf might have similar functions possessed by other CBF genes such as inducing the expression of some cold-regulated genes and increasing plants' freezing tolerance.  相似文献   

11.
Cold acclimation requires substantial alteration in membrane property. In contrast to well-documented fatty acid unsaturation during cold acclimation, changes in phospholipid biosynthesis during cold acclimation are less understood. Here, we isolated and characterized two aminoalcoholphosphotransferase (AAPT) cDNAs, TaAAPT1 and TaAAPT2, from wheat. AAPTs utilize diacylglycerols and CDP-choline/ethanolamine as substrates and catalyze the final step of the CDP-choline/ethanolamine pathway for phosphatidylcholine (PC)/phosphatidylethanolamine (PE) synthesis, respectively. Functionality of TaAAPT1 and TaAAPT2 was demonstrated by heterologous expression in a yeast cpt1Δ ept1Δ double mutant that lacks both AAPT activities. Detailed characterization of AAPT activities from the transformed mutant cells indicated that TaAAPT1 is an ECPT-type enzyme with higher ethanolamine phosphotransferase (EPT) activity than choline phosphotransferase (CPT) activity, while TaAAPT2 is a CEPT-type with the opposite substrate preference. Transient expression of GFP-fused TaAAPT1 and TaAAPT2 proteins in wheat and onion cells indicated they are localized to both the endoplasmic reticulum and Golgi apparatus, suggesting that the final synthesis of PE and PC via the CDP-choline/ethanolamine pathway occurs in these organella. Quantitative PCR analyses revealed that TaAAPT1 expression is strongly induced by cold, while TaAAPT2 was constitutively expressed at lower levels. Measurement of phospholipid content in wheat leaves indicated that PE is more prominently increased in response to cold than PC and accordingly PE/PC ratio increased from 0.385 to 0.530 during 14 days of cold acclimation. Together, these data suggested that an increase in the PE/PC ratio during cold acclimation is regulated at the final step of the biosynthetic pathway.  相似文献   

12.
The endoplasmic reticulum UDP-Glc:glycoprotein glucosyltransferase (GT) exclusively glucosylates nonnative glycoprotein conformers. GT sequence analysis suggests that it is composed of at least two domains: the N-terminal domain, which composes 80% of the molecule, has no significant similarity to other known proteins and was proposed to be involved in the recognition of non-native conformers and the C-terminal or catalytic domain, which displays a similar size and significant similarity to members of glycosyltransferase family 8. Here, we show that N- and C-terminal domains from Rattus norvegicus and Schizosaccharomyces pombe GTs remained tightly but not covalently bound upon a mild proteolytic treatment and could not be separated without loss of enzymatic activity. The notion of a two-domain protein was reinforced by the synthesis of an active enzyme upon transfection of S. pombe GT null mutants with two expression vectors, each of them encoding one of both domains. Transfection with the C-terminal domain-encoding vector alone yielded an inactive, rapidly degraded protein, thus indicating that the N-terminal domain is required for proper folding of the C-terminal catalytic portion. If, indeed, the N-terminal domain is, as proposed, also involved in glycoprotein conformation recognition, the tight association between N- and C-terminal domains may explain why only N-glycans in close proximity to protein structural perturbations are glucosylated by the enzyme. Although S. pombe and Drosophila melanogaster GT N-terminal domains display an extremely poor similarity (16.3%), chimeras containing either yeast N-terminal and fly C-terminal domains or the inverse construction were enzymatically and functionally active in vivo, thus indicating that the N-terminal domains of both GTs shared three-dimensional features.  相似文献   

13.
Only scanty and contradictory data are available concerning effects of low temperatures and ABA on the structural organization of microtubules (MTs) and microfilaments (MFs), and no information exists on the interaction of these parameters at cold acclimation of plants. Therefore, in cold acclimate and ABA-treated winter wheat plants, a comparative study was made of the state (localization, orientation, structure) and stability of actin and tubulin cytoskeleton in root cells taken from different zones, using indirect immunofluorescent microscope. The plant cold acclimation caused MT aggregation, the rise of MT and MF fluorescence, and the increase of their stability (a decrease of oryzalin effect) mainly in the root differentiation zone, that may testify to the strengthening of contacts between MTs and MFs. Like the cold acclimation, ABA induced the formation of MT bunches only in meristem and elongation zone cells. However in the zone of differentiation, the hormone stimulated the increase of tubulin structure stability, well correlating with a decrease in MT content, aggregation degree, and immunofluorescence, and, in addition with a complete depolymerization of MFs. Low temperatures removed the hormone effect on the structural organization of tubulin and actin cytoskeleton in the zone of differentiation. It is suggested that MT destruction, the decrease of instable MT populations, and the increase of stable MT populations may slow down growth processes in ABA-treated plants, similarly as in seedlings being on the initial stages of cold acclimation. By the end of this process, the induction of plant growth is determined evidently by the increase in the number of instable, highly labile MT populations, and in the status of MF polymerization.  相似文献   

14.
Desmoplakins (DP) and bullous pemphigoid antigen (BPA) are major plaque components of the desmosome and hemidesmosome, respectively. These cell adhesion structures are both associated intimately with the intermediate filament (IF) network. Structural analyses of DP and BPA sequences have indicated that these molecules are likely to form extended dumbbell-shaped dimers with a central rod and globular end domains. Recent sequence data have indicated that the N-terminal domains of both DP and BPA (like their C-terminal domains) are highly related: the former contain regions of heptad repeats that are predicted to form several alpha-helical bundles. Comparisons of DP and BPA protein sequences with that of plectin (PL), a 466 kDa IF-associated protein, have also revealed large scale homology. Identities between their N-terminal domains are: DP:BPA = 35%, DP:PL = 32%, BPA:PL = 40%, suggesting that BPA is more closely related to PL than DP in this region. In the C-terminal domains, which contain a 38-residue repeating motif, however, DP and PL are closer relatives (identities: DP:BPA = 38%, BPA:PL = 40%, DP:PL = 49%). The central domains of all three proteins have extensive heptad repeat substructure, express the same periodic distribution of charged residues, and are predicted to form two-stranded alpha-helical coiled-coil ropes. These observations suggest that DP, BPA and PL belong to a new gene family encoding proteins involved in IF organization.  相似文献   

15.
Chromatin DNA-dependent RNA polymerases and RNases activities were measured in winter and spring varieties to understand the overall regulation of RNA synthesis during cold acclimation. We found that total RNA polymerase activities were significantly higher in chromatin isolated from winter wheat compared to the spring wheat during the acclimation period. This increase was parallel to the increase in protein and RNA contents during hardening. The ratio of RNA polymerase I to RNA polymerase II activity was higher than 2 in winter wheat after 30 days of hardening compared, to a ratio of 0.90 under the nonhardening conditions. The increase in activity and the ratio of polymerase I to polymerase II was maintained after the separation of the enzymes from the template, suggesting that RNA synthesis is regulated in part at the enzyme level. On the other hand, the chromatin associated RNase activity decreased in both varieties during acclimation, indicating a nonspecific inhibition caused by low temperature rather than a selective genetic response associated with cold acclimation.  相似文献   

16.
Seasonal low temperature (LT) adversely affects growth of plants. The onset of LT in temperate zones also entails the process of cold acclimation, preparing the plants to withstand freezing temperatures. During this process of cold acclimation a number of physiological, biochemical and molecular changes occur. A differentially expressed enolase gene in wheat plants exposed to LT was previously identified by cDNA‐amplified fragment length polymorphism. In this study, two wheat enolase cDNA, TaENO‐a and TaENO‐b amplified by 5′,3′ rapid amplification of cDNA end (RACE)‐PCR (polymerase chain reaction), were isolated and characterised. Quantitative real‐time PCR (QPCR) was done to assess their expression patterns in leaf and crown tissues of wheat plants exposed to LT. BLAST searches and bioinformatic analyses were done to determine the structure, domains and phylogeny of the cloned sequences. The two cDNA sequences differed mostly in the 5′ and 3′ untranslated regions. Deduced amino acid sequence showed high identity to bacteria, yeast, fungi, human and plant enolases with conserved putative DNA‐binding and repressor domains. A genomic clone containing 17 exons distributed over 4.5 kb structurally shared a high degree of similarity to rice enolase. QPCR revealed combined effects of LT and ageing on expression of TaENO‐a and TaENO‐b. Down‐regulation of TaENO‐a was observed with age in the crown tissues upon exposure to LT, but in leaf initial up‐regulation was followed by down‐regulation. Expression of TaENO‐b was similar to expression patterns previously reported for cold‐regulated (COR) genes in wheat, wherein the recessive vrnA‐1 allele influenced its expression in the leaf and genetic background determines its expression in the crown.  相似文献   

17.
We have isolated, sequenced, and expressed a cold-specific cDNA clone, Wcs120, that specifically hybridizes to a major mRNA species of approximately 1650 nucleotides from cold-acclimated wheat (Triticum aestivum L.). The accumulation of this mRNA was induced in less than 24 hours of cold treatment, and remained at a high steady-state level during the entire period of cold acclimation in the two freezing-tolerant genotypes of wheat tested. The expression of Wcs120 was transient in a less-tolerant genotype even though the genomic organization of the Wcs120 and the relative copy number were the same in the three genotypes. The mRNA level decreased rapidly during deacclimation and was not induced by heat shock, drought, or abscisic acid. The Wcs120 cDNA contains a long open reading frame encoding a protein of 390 amino acids. The encoded protein is boiling stable, highly hydrophilic, and has a compositional bias for glycine (26.7%), threonine (16.7%), and histidine (10.8%), although cysteine, phenylalanine, and tryptophan were absent. The WCS120 protein contains two repeated domains. Domain A has the consensus amino acid sequence GEKKGVMENIKEKLPGGHGDHQQ, which is repeated 6 times, whereas domain B has the sequence TGGTYGQQGHTGTT, which is repeated 11 times. The two domains were also found in barley dehydrins and rice abscisic acid-induced protein families. The expression of this cDNA in Escherichia coli, using the T7 RNA polymerase promoter, produced a protein of 50 kilodaltons with an isoelectric point of 7.3, and this product comigrated with a major protein synthesized in vivo and in vitro during cold acclimation.  相似文献   

18.
Wheat is an essential element in our nutrition but one of the most important food allergen sources. Wheat allergic patients often suffer from severe gastrointestinal and systemic allergic reactions after wheat ingestion. In this study, we report the molecular and immunological characterization of a new major wheat food allergen, Tri a 36. The cDNA coding for a C-terminal fragment of Tri a 36 was isolated by screening a wheat seed cDNA expression library with serum IgE from wheat food-allergic patients. Tri a 36 is a 369-aa protein with a hydrophobic 25-aa N-terminal leader peptide. According to sequence comparison it belongs to the low m.w. glutenin subunits, which can be found in a variety of cereals. The mature allergen contains an N-terminal domain, a repetitive domain that is rich in glutamine and proline residues, and three C-terminal domains with eight cysteine residues contributing to intra- and intermolecular disulfide bonds. Recombinant Tri a 36 was expressed in Escherichia coli and purified as soluble protein. It reacted with IgE Abs of ~80% of wheat food-allergic patients, showed IgE cross-reactivity with related allergens in rye, barley, oat, spelt, and rice, and induced specific and dose-dependent basophil activation. Even after extensive in vitro gastric and duodenal digestion, Tri a 36 released distinct IgE-reactive fragments and was highly resistant against boiling. Thus, recombinant Tri a 36 is a major wheat food allergen that can be used for the molecular diagnosis of, and for the development of specific immunotherapy strategies against, wheat food allergy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号