首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the cloning and characterization of two lectin genes from Medicago truncatula, designated Mtlec1 and Mtlec2. The two genes show a high degree of homology and apparently belong to a small multigene family. Mtlec1 appears to encode a functional lectin with 277 amino acids, whereas Mtlec2 is probably non-functional, since a frameshift mutation (insertion of two nucleotides) leads to premature translation termination after only 98 amino acids. The deduced amino acid sequence of the polypeptide MtLEC1 suggests that this lectin is a metalloprotein with Glc/Man specificity.  相似文献   

2.
Summary Plants were suecessfully régenerated via somatic embryos from 3-yr-old cell suspension cultures of Medicago truncatula Gaertin. cv. Jemalong line M9-10a. The cultures were originally initiated from callus induced in well-expanded leaflets of 30 d in vitro-grown plants, Suspension cultures were established in stirred-liquid Murashige and Skoog (MS) basal salts and vitamins supplemented with 2.3 μM 2.4-dichlorophenoxyacetic acid (2,4-D) and 2.3 μM kinetin (Kin) and subeultured weekly. Somatic embryogenesis induction step was conducted in liquid MS medium containing 0.45 μM 2,4-D and 0.91 μM zeatin (Zea), during 1,2, and 3wk after subculture. Induced and non-induced cultures were transferred to solid embryo proliferation medium [EPM-MS basal salts and vitamins solidified with 0.2% (w/v) gelrite]. Somatic embryos developed until the late torpedo/dicotyledonary stages. We found that the best condition for the development of somatic embryos was achieved when suspension cultures were not subjected to the induction step. Induction of 1 and 2 wk led to a decrease in the recovery of somatic embryos and the 3-wk treatment resulted in no differentiation of somatic embryos. Plant regeneration was obtained in all conditions (except for 3wk induction) when embryos were transferred to an embryo conversion medium [ECM, similar to EPM but solidified with 0.7% (w/v) agar]. Embryo conversion rates were 54.5±1.6, 52.5±18.5, and 41.6±8.4% for 0, 1, and 2 wk induction treatments, respectively. These plants were successfully transferred to the greenhouse where they matured and produced seeds.  相似文献   

3.
Summary The model legume Medicago truncatula was used to trap natural populations of Sinorhizobium meliloti and Sinorhizobium medicae in Tunisian soils to explore their genetic diversity. About 155 Sinorhizobium isolates were trapped from a combination of three soils and four Medicago truncatula populations in order to analyse soil and plant population effects on nodulating Sinorhizobium diversity. The species assignment was done according to the restriction fragment length polymorphism analysis of polymerase chain reaction (PCR/RFLP) of 16S rRNA genes and their infraspecific genetic diversity was assessed with the repetitive extragenic palindromic-polymerase chain reaction (REP-PCR) technique. It appeared that the trapped bacteria were clustered according to the soil of origin, particularly Sinorhizobium medicae isolates. However, regarding the plant population effect, it appeared that no major clustering tendency could be suggested even if the Bulla Regia and Soliman Medicago truncatula populations appeared to nodulate together specific Sinorhizobium medicae genotypes.  相似文献   

4.
5.
  总被引:4,自引:0,他引:4  
Here we present a Zn transporter cDNA named MtZIP2 from the model legume Medicago truncatula. MtZIP2 encodes a putative 37 kDa protein with 8-membrane spanning domains and has moderate amino acid identity with the Arabidopsis thaliana Zn transporter AtZIP2p. MtZIP2 complemented a Zn-uptake mutant of yeast implying that the protein encoded by this gene can transport Zn across the yeast's plasma membrane. The product of a MtZIP2-GFP fusion construct introduced into onion cells by particle bombardment likewise localized to the plasma membrane. The MtZIP2 gene was expressed in roots and stems, but not in leaves of M. truncatula and, in contrast to all other plant Zn transporters characterized thus far, MtZIP2 was up-regulated in roots by Zn fertilization. Expression was highest in roots exposed to a toxic level of Zn. MtZIP2 expression was also examined in the roots of M. truncatula when colonized by the obligate plant symbiont, arbuscular mycorrhizal (AM) fungi, since AM fungi are renowned for their ability to supply plants with mineral nutrients, including Zn. Expression was down-regulated in the roots of the mycorrhizal plants and was associated with a reduced level of Zn within the host plant tissues.  相似文献   

6.
Several novel but similar heavy metal ion transporters, Zrt1, Zrt2, Zip1-4 and Irt1, have recently been characterized. Zrt1, Zrt2 and Zip1-4 are probably zinc transporters in Saccharomyces cerevisiae and Arabidopsis thaliana whereas Irt1 appears to play a role in iron uptake in A. thaliana. The family of proteins including these functionally characterized transporters has been designated the Zrt- and Irt-related protein (ZIP) family. In this report, ZIP family proteins in the current databases were identified and multiply aligned, and a phylogenetic tree for the family was constructed. A family specific signature sequence was derived, and the available sequences were analyzed for residues of potential functional significance. A fully conserved intramembranous histidyl residue, present within a putative amphipathic, α-helical, transmembrane spanning segment, was identified which may serve as a part of an intrachannel heavy metal ion binding site. The occurrence of a proposed extramembranal metal binding motif (H X H X H) was examined in order to evaluate its potential functional significance for various members of the family. The computational analyses reported in this topical review should serve as a guide to future researchers interested in the structure-function relationships of ZIP family proteins. Received: 31 March 1997/Revised: 14 May 1998  相似文献   

7.
Branched 1,6-1,3-beta-glucans from Phytophthora sojae cell walls represent pathogen-associated molecular patterns (PAMPs) that have been shown to mediate the activation of plant defence reactions in many legumes. In soybean, a receptor protein complex containing a high affinity beta-glucan-binding protein (GBP) was identified and investigated in detail. In the model legume Medicago truncatula, used for functional genomic studies of various plant-microbe interactions, a high-affinity beta-glucan-binding site was characterized biochemically. However, to date, none of the genes encoding GBPs from M. truncatula have been described. Here, we report the identification of four full-length clones encoding putative beta-glucan-binding proteins from M. truncatula, MtGBP1, 2, 3, and 4, composing a multigene family encoding GBP-related proteins in this plant. Differences in expression patterns as well as in regulation on treatment with two different biotic elicitors are demonstrated for the members of the GBP family and for a selection of defence-related genes.  相似文献   

8.
The relationship between Na+, major cation concentrations and salt tolerance under long-term saline conditions of Medicago arborea and Medicago citrina was studied. Plants were grown in solution culture in 1, 50, 100, or 200 mmol/L NaCl for 30 days in a climate-controlled greenhouse. Stem and petiole growth was the most affected by salt in both species. Leaf growth was inhibited in M. arborea, with increased salt, while only the 200 mmol/L NaCl-treated M. citrina plants were significantly affected. Both species had the highest Na+ concentrations in the shoots, however, the allocation pattern was different; M. arborea showed the highest concentrations in the leaf blades, whereas M. citrina distributed the salt into the petioles. K+/Na+ ratio decreased with salt in both species; however, leaf K+ use efficiency (g leaf DW mg-1 leaf K+) was higher in M. citrina. The difference in Na+ allocation and cation concentrations found in these medic species and their importance is discussed in relation to their response to NaCl salinity.  相似文献   

9.
Embryo induction and regeneration from suspension culture of two Medicago truncatula cvs. (cv. R 108 1 and cv. Jemalong) have been studied. The influence of osmotic pre-treatment (1 M solution of sucrose for 48 h and 72 h) of roots as an initial explant, on embryogenic efficiency of the suspension culture was assessed. In comparison to the control, the level of abscisic acid (ABA) increased significantly after osmotic stress. The increased ABA level did not correlate with the induction of embryogenesis neither with the improved embryogenic potential of cv. R 108 1. The shortest regeneration period and the highest percent of conversion to plants were found in cv. R 108 1 after 72-h pre-treatment of roots. The efficiency of somatic embryo conversion was less after 48-h pre-treatment and much less for the untreated control. Osmotic stress did not positively affect the process of embryogenesis from root explants of cv. Jemalong, confirming its cultivar dependence. A single cell suspension fraction was produced in both Medicago trunacatula cvs. during the somatic embryo maturation stage. A higher embryogenic potential than the initial suspension culture was established only for the cell suspension originating from 72-h pre-treated roots of cv. R 108 1. The data confirms that the process of somatic embryo induction and embryo conversion from root explants of cv. R 108 1 could be promoted by osmotic stress pre-treatment.  相似文献   

10.
The crop legume pea (Pisum sativum) is genetically well characterized. However, due to its large genome it is not amenable to efficient positional cloning strategies. The purpose of this study was to determine if the model legume Medicago truncatula, which is a close relative of pea, could be used as a reference genome to facilitate the cloning of genes identified based on phenotypic and genetic criteria in pea. To this end, we studied the level of microsynteny between the SYM2 region of pea and the orthologous region in M. truncatula. Initially, a marker tightly linked to SYM2 was isolated by performing differential RNA display on near-isogenic pea lines. This marker served as the starting point for construction of a BAC physical map in M. truncatula. A fine-structure genetic map, based on eight markers from the M. truncatula physical map, indicates that the two genomes in this region share a conserved gene content. Importantly, this fine structure genetic map clearly delimits the SYM2-containing region in pea and the SYM2-orthologous region in M. truncatula, and should provide the basis for cloning SYM2. The utility of the physical and genetic tools in M. truncatula to dissect the SYM2 region of pea should have important implications for other gene cloning experiments in pea, in particular where the two genomes are highly syntenic within the region of interest.  相似文献   

11.
Understanding the selective constraints of partner specificity in mutually beneficial symbiosis is a significant, yet largely unexplored, prospect of evolutionary biology. These selective constraints can be explored through the study of nucleotide polymorphism at loci controlling specificity. The membrane-anchored receptor NORK (nodulation receptor kinase) of the legume Medicago truncatula controls early steps of root infection by two symbiotic microorganisms: nitrogen-fixing bacteria (rhizobia) and endomycorrhizal fungi (Glomales). We analyzed the diversity of the gene NORK by sequencing 4 kilobases in 28 inbred lines sampled from natural populations. We detected 33 polymorphic sites with only one nonsynonymous change. Analysis based on Tajima’s D and Fay and Wu’s H summary statistics revealed no departure from the neutral model. We analyzed divergence using sequences from the closely related species M. coerulea. The McDonald-Kreitman test indicated a significant excess of nonsynonymous changes contributing to this divergence. Furthermore, maximum-likelihood analysis of a molecular phylogeny of a few legume species indicated that a number of amino acid sites, likely located in the receptor domain of the protein, evolved under the regime of positive selection. Further research should focus on the rate and direction of molecular coevolution between microorganisms’ signaling molecules and legumes’ receptors. [Reviewing Editor: Dr. Deborah Charlesworth] Sequence data were deposited in the GenBank database under accession nos. AY676428 to AY676457 and AJ884582.  相似文献   

12.
13.
This study explores methods to use information gathered from genomics technology to understand evolutionary relationships in the hyperdiverse legume group Neo-Astragalus. These species inhabit deserts and mountains of North and South America, and even though the monophyly of the group is well established, relationships within it are still poorly understood. Plastid genes, commonly used to infer phylogenies in plants, are usually not useful for closely related taxa because of low levels of genetic variation. TheMedicago truncatula genome project provided a suite of candidate nuclear loci with high levels of variation that might prove suitable for low-level phylogenetics. This paper reports the development of methods for screening a large number of these nuclear loci, and detailed analysis of four of them. Four different patterns of phylogenetic diversification occur in the loci sampled from these genomes ofAstragalus species. One locus (CNGC4) was single copy and could be directly used in phylogenetic analyses. Two loci (ARG10 and FENR) showed patterns strongly suggestive of duplication events in some taxa, and one locus (tRALS) has apparently undergone a cryptic duplication, making it very difficult to diagnose. Potential methods for using the information provided by these loci are discussed.  相似文献   

14.
    
A large gene family encoding the putative cysteine-rich defensins was discovered in Medicago truncatula. Sixteen members of the family were identified by screening a cloned seed defensin from M. sativa (Gao et al. 2000) against the Institute for Genomic Research’s (TIGR) M. truncatula gene index (MtGI version 7). Based on the comparison of their amino acid sequences, M. truncatula defensins fell arbitrarily into three classes displaying extensive sequence divergence outside of the eight canonical cysteine residues. The presence of Class II defensins is reported for the first time in a legume plant. In silico as well as Northern blot and RT-PCR analyses indicated these genes were expressed in a variety of tissues including leaves, flowers, developing pods, mature seed and roots. The expression of these genes was differentially induced in response to a variety of biotic and abiotic stimuli. For the first time, a defensin gene (TC77480) was shown to be induced in roots in response to infection by the mycorrhizal fungus, Glomus versiforme. Northern blot analysis indicated that the tissue-specific expression patterns of the cloned Def1 and Def2 genes differed substantially between M. truncatula and M. sativa. Furthermore, the induction profiles of the Def1 and Def2 genes in response to the signaling molecules methyl jasmonate, ethylene and salicylic acid differed markedly between these two legumes.  相似文献   

15.
16.
Expression of the uidA reporter gene was tested in transformation experiments of barrel medic (Medicago truncatula Gaertn.) with the ipt-type control vectors pIPT5, pIPT10 and pIPT20 and distinct in vitro culture conditions. The highest GUS expression levels were obtained with the pIPT10 construct carrying the ipt gene under the control of the native ipt promoter and using kanamycin as selective agent. The ipt-shooty transformants, characterized by the absence of both rooting ability and apical dominance associated with vitrification, were easily identified by visual selection. Using only the ipt gene as selectable marker, we obtained a stable transformation frequency of 9.8% with pIPT10 construct. The ipt-type MAT vector pEXM2 was then used to monitor the excision events mediated by the yeast Recombinase and the consequent production of ipt marker-free transgenic plants. Transgenic ipt-shooty lines were recovered at a frequency of 7.9% in the absence of kanamycin-based selection. The ipt-shooty phenotype was maintained in all the transgenic lines and no reversion to the normal phenotype occurred. PCR analysis revealed the presence of the ‘hit and run’ cassette in the genome of all the regenerated ipt-shooty lines while RT-PCR experiments confirmed the expression of the R gene, encoding the yeast Recombinase. A detailed molecular investigation, carried out to verify the integrity of the RS sites, revealed that these regions were intact in most cases. Our results with barrel medic suggest that the MAT system must be carefully evaluated and discussed on a case by case basis. L. Scaramelli, A. Balestrazzi and M. Confalonieri have contributed equally to this work.  相似文献   

17.
18.
19.
Lotus japonicus and Medicago truncatula model legumes, which form determined and indeterminate nodules, respectively, provide a convenient system to study plant-Rhizobium interaction and to establish differences between the two types of nodules under salt stress conditions. We examined the effects of 25 and 50mM NaCl doses on growth and nitrogen fixation parameters, as well as carbohydrate content and carbon metabolism of M. truncatula and L. japonicus nodules. The leghemoglobin (Lb) content and nitrogen fixation rate (NFR) were approximately 10.0 and 2.0 times higher, respectively, in nodules of L. japonicus when compared with M. truncatula. Plant growth parameters and nitrogenase activity decreased with NaCl treatments in both legumes. Sucrose was the predominant sugar quantified in nodules of both legumes, showing a decrease in concentration in response to salt stress. The content of trehalose was low (less than 2.5% of total soluble sugars (TSS)) to act as an osmolyte in nodules, despite its concentration being increased under saline conditions. Nodule enzyme activities of trehalose-6-phosphate synthase (TPS) and trehalase (TRE) decreased with salinity. L. japonicus nodule carbon metabolism proved to be less sensitive to salinity than in M. truncatula, as enzymatic activities responsible for the carbon supply to the bacteroids to fuel nitrogen fixation, such as sucrose synthase (SS), alkaline invertase (AI), malate dehydrogenase (MDH) and phosphoenolpyruvate carboxylase (PEPC), were less affected by salt than the corresponding activities in barrel medics. However, nitrogenase activity was only inhibited by salinity in L. japonicus nodules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号