首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cyclin-dependent kinase (CDK) inhibitor p27kip1 is an important negative regulator of the cell cycle that sets a threshold for mitogenic signals in T lymphocytes, and is required for T cell anergy in vitro. To determine whether p27(kip1) is required for tolerance in vivo, we performed cardiac allograft transplantation under conditions of combined CD28/CD40L costimulatory blockade. Although this treatment induced long-term allograft survival in wild-type recipients, costimulatory blockade was no longer sufficient to induce tolerance in mice lacking p27kip1. Rejected allografts from p27kip1-/- mice contained more CD4+ T lymphocytes and exhibited more tissue damage than allografts from tolerant, wild-type mice. Infiltrating p27kip1-deficient T cells, but not wild-type T cells, exhibited nuclear expression of cyclins E and A, indicating uncontrolled T cell cycle progression in the graft. The failure of tolerance in p27kip1-/- mice was also accompanied by markedly increased numbers of allospecific, IFN-gamma-producing cells in the periphery, and occurred despite apparently normal regulatory T cell activity. These data demonstrate that the CDK inhibitor p27kip1 enforces the costimulatory requirement for the expansion and differentiation of alloimmune effector T lymphocytes in vivo, and point to CDKs as novel targets for immunosuppressive or tolerance-inducing therapies.  相似文献   

2.
Cyclins, cyclin-dependent kinases (CDKs) and the CDK inhibitor p27(kip1) are known to be involved in the regulation of G(1)/S phase transition by estrogen in the rodent endometrium. Little is known, however, of the cell-specific location and regulation of these proteins during this process, or the way they mediate the differential effect of estrogen in the epithelium and stroma of the endometrium. Here we studied the cell-specific regulation of D-type cyclin (D(1-3)), of cyclin A and E, of CDK(2) and p27(kip1) by 17beta-estradiol in the endometrium of ovariectomized rats. Time-course changes in these proteins in the endometrium of ovariectomized rats were examined by immunohistochemistry at 2, 4, 8, 12, 20, 28 and 32 h after estrogen stimulation. The expression of proliferation cell nuclear antigen (PCNA) was also studied as a marker of proliferating cells. As expected from previous studies, all the proteins investigated were up-regulated by estrogen, with peak times from 8 to 32 h. The induction of cyclin D(1) is predominant in the glandular epithelium, whereas cyclin D(3) increases mainly in the luminal epithelium. The up-regulation of p27(kip1) is restricted to stromal cells with a 'gradient-like' expression pattern, in which the sub-epithelial (functional) layer showed stronger staining than the basal layer. The differential regulation of cyclins and p27(kip1) in the epithelium and stroma of the endometrium appear indicative of distinct actions of estrogen in different cell types in the uterus, as D-type cyclins mediate the proliferative effect of estrogen in epithelial cells while p27(kip1) might help prevent the same effect in the stroma.  相似文献   

3.
The human p27kip1 gene encodes a cyclin-dependent kinase inhibitor implicated in the negative regulation of the cell cycle. In order to elucidate the possible role of p27 mutations in the development or progression of human breast cancer, we have studied the occurrence of genetic abnormalities in this gene in a series of 30 primary breast carcinomas. Direct sequence analysis of the polymerase chain reaction amplified human p27 gene revealed the occurrence of two sequence variations with respect to the reported sequence; both variants were also present in the lymphocyte DNA from the same patients. First, a silent G to A change at codon 142 (Thr) was detected in a single case. Second, a T to G transversion at codon 109, resulting in a Val to Gly change, was observed in eight tumour DNA samples (26%) and in 31 out of 80 unrelated normal individuals (39%). This latter change creates a BglI restriction site that might be useful for genetic analysis of human tumours. Despite the occurrence of these polymorphisms, we did not however find any evidence of somatic mutations in the coding region of the p27 gene. On the basis of these results, we suggest that alterations in the integrity of the human p27 gene are not common events in human breast carcinomas.  相似文献   

4.
Elevated levels of the cyclin-dependent kinase (CDK) inhibitor p27 block the cell in G(0)/G(1) until mitogenic signals activate G(1) cyclins and initiate proliferation. Post-translational regulation of p27 by different phosphorylation events is critical in allowing cells to proceed through the cell cycle. We now demonstrate that the arginine-directed kinase, Mirk/dyrk1B, is maximally active in G(0) in NIH3T3 cells, when it stabilizes p27 by phosphorylating it at Ser-10. The phospho-mimetic mutant p27-S10D was more stable, and the non-phosphorylatable mutant p27-S10A was less stable than wild-type when expressed in G(0)-arrested cells. Following phosphorylation by Mirk, p27 remains a functional CDK inhibitor, capable of binding to CDK2. Mirk did not induce the translocation of p27 from the nucleus in G(0), but instead co-localized with nuclear p27. Depletion of Mirk by RNA interference decreased the phosphorylation of p27 at Ser-10 and the stability of endogenous p27. RNA(i) to Mirk increased cell entry from G(0) into G(1) as shown by increased expression of proliferating cell nuclear antigen and decreased expression of p27. These data suggest a model in which Mirk increases the amount of nuclear p27 by stabilizing it during G(0) when Mirk is most abundant. Mitogen stimulation then causes cells to enter G(1), reduces Mirk levels (Deng, X., Ewton, D., Pawlikowski, B., Maimone, M., and Friedman, E. (2003) J. Biol. Chem. 278, 41347-41354), and initiates the translocation of p27 to the cytoplasm. In addition, depletion of Mirk by RNA(i) in postmitotic C2C12 myoblasts decreased protein but not mRNA levels of p27, suggesting that stabilization of p27 by Mirk also occurs during differentiation.  相似文献   

5.
6.
Cell cycle progression is under the control of cyclin-dependent kinases (cdks), the activity of which is dependent on the expression of specific cdk inhibitors. In this paper we report that the two cdk inhibitors, p27(Kip1) and p18(INK4c), are differently expressed and control different steps of human B lymphocyte activation. Resting B cells contain large amounts of p27(Kip1) and no p18(INK4c). In vitro stimulation by Staphylococcus aureus Cowan 1 strain or CD40 ligand associated with IL-10 and IL-2 induces a rapid decrease in p27(Kip1) expression combined with cell cycle entry and progression. In contrast, in vitro Ig production correlates with specific expression of p18(INK4c) and early G(1) arrest. This G(1) arrest is associated with inhibition of cyclin D3/cdk6-mediated retinoblastoma protein phosphorylation by p18(INK4c). A similar contrasting pattern of p18(INK4c) and p27(Kip1) expression is observed both in B cells activated in vivo and in various leukemic cells. Expression of p18(INK4c) was also detected in various Ig-secreting cell lines in which both maximum Ig secretion and specific p18(INK4c) expression were observed during the G(1) phase. Our study shows that p27(Kip1) and p18(INK4c) have different roles in B cell activation; p27(Kip1) is involved in the control of cell cycle entry, and p18(INK4c) is involved in the subsequent early G(1) arrest necessary for terminal B lymphocyte differentiation.  相似文献   

7.
The cyclin-dependent kinase (Cdk) inhibitor p27Kip1 contributes to the timing of cell cycle withdrawal during development and, consequently, in organogenesis. Within the retina, this effector protein is up-regulated during the birth of neuronal and glial cells [Dev. Biol. (2000) 299]. However, its expression within the retinal pigment epithelium (RPE), a supporting cell layer that is essential for neural retina development and function, has not previously been reported. We show that p27Kip1 protein expression in the RPE occurs in two phases: an up-regulation during mid-to late embryonic stages and a down-regulation during the subsequent postnatal period. In the early phase of up-regulation, an inverse relationship is seen between expression of p27Kip1 and PCNA, an indicator of cycling cells. During both up-and down-regulation, the change in spatial pattern of expression proceeds in a central to peripheral manner, with p27Kip1 up-regulation paralleling retinal maturation. These data suggest that this cell cycle regulator may be an important factor controlling the timing of RPE cell cycle withdrawal.  相似文献   

8.
9.
10.
Cell division drives T cell clonal expansion and differentiation, and is the result of concerted signaling from Ag, costimulatory, and growth factor receptors. How these mitogenic signals are coupled to the cell cycle machinery in primary T cells is not clear. We have focused on the role of p27kip1, a major cyclin-dependent kinase binding protein expressed by CD4+ T cells. Our studies using p27kip1 gene dosage demonstrate that early after activation, p27kip1 acts to promote, rather than inhibit, G1 to S phase progression within the first division cycle. However, throughout subsequent cell divisions p27kip1 behaves as a negative regulator, directly establishing the threshold amount of growth factor signaling required to support continued cell division. During this phase, signals from CD28 and IL-2R cooperate with the TCR to "tune" this threshold by inducing the degradation of p27kip1 protein, and we show that agents that block these pathways require elevated p27kip1 levels for their full antiproliferative activity. Finally, we show that p27kip1 opposes the development of CD4+ T cell effector function, and is required for the full development of anergy in response to a tolerizing stimulus. Our results suggest that p27kip1 plays a complex and important role in the regulation of cell division and effector function in primary CD4+ T cells.  相似文献   

11.
The hepatitis B virus (HBV) large surface antigen (LHBS) mutant with deletion at the pre-S(2) region accumulates in endoplasmic reticulum (ER) and is associated with HBV-induced hepatocellular carcinogenesis. In this study, we found that the pre-S(2) LHBS mutant directly interacts with the Jun activation domain-binding protein 1 (JAB1). Association of pre-S(2) LHBS with JAB1 dissociated JAB1 from the JAB1/IRE1 complex in ER. The free (active) JAB1 then translocated into cell nuclei and rendered the Cdk inhibitor p27(Kip1) to cytosolic proteasome for degradation. The pre-S(2) LHBS mutant induced hyperphosphorylation of tumor suppressor retinoblastoma (RB) via cyclin-dependent kinase 2 (Cdk2), a downstream molecule regulated by p27(Kip1). This effect is independent of the ER stress signaling pathway. The transgenic mice carrying the pre-S(2) mutant LHBS gene also exhibited Cdk2 activation, p27(Kip1) degradation, as well as RB hyperphosphorylation. The mouse hepatocytes exhibited morphologic abnormalities such as chromatin condensation, multinucleation, and dysplasia of hepatocytes. In summary, the pre-S(2) LHBS mutant causes p27(Kip1) degradation through direct interaction with JAB1. The pre-S(2) mutant LHBS is suggested to be a potential oncoprotein for HBV-related hepatocellular carcinoma.  相似文献   

12.
The cyclin-dependent kinase inhibitor p27(kip1) is a putative tumor suppressor for human cancer. The mechanism underlying p27(kip1) deregulation in human cancer is, however, poorly understood. We demonstrate that the serine/threonine kinase Akt regulates cell proliferation in breast cancer cells by preventing p27(kip1)-mediated growth arrest. Threonine 157 (T157), which maps within the nuclear localization signal of p27(kip1), is a predicted Akt-phosphorylation site. Akt-induced T157 phosphorylation causes retention of p27(kip1) in the cytoplasm, precluding p27(kip1)-induced G1 arrest. Conversely, the p27(kip1)-T157A mutant accumulates in cell nuclei and Akt does not affect p27(kip1)-T157A-mediated cell cycle arrest. Lastly, T157-phosphorylated p27(kip1) accumulates in the cytoplasm of primary human breast cancer cells coincident with Akt activation. Thus, cytoplasmic relocalization of p27(kip1), secondary to Akt-mediated phosphorylation, is a novel mechanism whereby the growth inhibitory properties of p27(kip1) are functionally inactivated and the proliferation of breast cancer cells is sustained.  相似文献   

13.

Background  

Cyclins regulate the cell cycle in association with cyclin dependent kinases (CDKs). CDKs are under inhibitory control of cyclin dependent kinase inhibitors (CDKIs).  相似文献   

14.
p27(Kip1) is a cyclin-dependent kinase inhibitor, and its nuclear localization is a prerequisite for it to function as a cell cycle regulator. In the present study, the minimal requirement for the nuclear localization signal (NLS) of p27(Kip1) was determined by analyzing the localization of various mutants of p27(Kip1) tagged with green fluorescent protein (GFP) in HeLa cells and porcine aortic endothelial cells. Wild-type p27(Kip1) exclusively localized into nucleus, while GFP alone localized in both cytosol and nucleus. A comparison of various truncation mutants revealed residues 153-166 to be the minimal region necessary for nuclear localization. However, a fusion of this region to GFP showed cytoplasmic retention in addition to nuclear localization, thus suggesting that some extension flanking this region is required to achieve a full function of NLS. The site-directed mutation of the full-length p27(Kip1) therefore showed that four basic residues (K153, R154, K165, R166), especially R166, play a critical role in the nuclear localization of p27(Kip1).  相似文献   

15.
Entry of cells into the cell division cycle requires the coordinated activation of cyclin-dependent kinases (cdks) and the deactivation of cyclin kinase inhibitors. Degradation of p27kip1 is known to be a central component of this process as it allows controlled activation of cdk2-associated kinase activity. Turnover of p27 at the G1/S transition is regulated through phosphorylation at T187 and subsequent SCF(skp2)-dependent ubiquitylation. However, detailed analysis of this process revealed the existence of additional pathways that regulate the abundance of the protein in early G1 and as cells exit quiescence. Here, we report on a molecular mechanism that regulates p27 stability by phosphorylation at T198. Phosphorylation of p27 at T198 prevents ubiquitin-dependent degradation of free p27. T198 phosphorylation also controls progression through the G1 phase of the cell cycle by regulating the association of p27 with cyclin-cdk complexes. Our results unveil the molecular composition of a pathway, which regulates the abundance and activity of p27kip1 during early G1. They also explain how the T187- and the T198-dependent turnover systems synergize to allow cell cycle progression in G1.  相似文献   

16.
17.
Tuberous sclerosis complex (TSC) is an autosomal dominant tumor syndrome that affects approximately 1 in 6000 individuals. It is characterized by the development of tumors, named hamartomas, in the kidneys, heart, skin and brain. The latter often cause seizures, mental retardation, and a variety of developmental disorders, including autism. This disease is caused by mutations within the tumor suppressor gene TSC1 on chromosome 9q34 encoding hamartin or within TSC2 on chromosome 16p13.3 encoding tuberin. TSC patients carry a mutant TSC1 or TSC2 gene in each of their somatic cells, and loss of heterozygosity has been documented in a wide variety of TSC tumors. Recent data suggest that functional inactivation of TSC proteins might also be involved in the development of other diseases not associated with TSC, such as sporadic bladder cancer, breast cancer, ovarian carcinoma, gall bladder carcinoma, non-small-cell carcinoma of the lung, and Alzheimer's disease. Tuberin and hamartin form a heterodimer, suggesting they might affect the same processes. Tuberin is assumed to be the functional component of the complex and has been implicated in the regulation of different cellular functions. The TSC proteins regulate cell size control due to their involvement in the insulin signalling pathway. Furthermore, they are potent positive regulators of the cyclin-dependent kinase inhibitor p27, a major regulator of the mammalian cell cycle. Here we review the current knowledge on how mutations within the TSC genes could trigger deregulation of stability and localization of the tumor suppressor p27.  相似文献   

18.
Engagement of the B cell receptor of WEHI 231 immature B cells leads sequentially to a drop in c-Myc, to induction of the cyclin-dependent kinase inhibitor p27Kip1, and finally to apoptosis. Recently we demonstrated that the drop in c-Myc expression promotes cell death, whereas the induction of p27 has been shown to lead to growth arrest. In this paper, we demonstrate that increased p27 expression also promotes apoptosis of WEHI 231 B cells. The rescue of WEHI 231 cells by CD40 ligand engagement of its receptor prevented the increase in p27 induction. Inhibition of p27-ablated apoptosis induced upon expression of antisense c-myc RNA. Furthermore, specific induction of p27 gene expression resulted in apoptosis of WEHI 231 cells. Lastly, inhibition of expression of c-Myc, upon induction of an antisense c-myc RNA vector, was sufficient to induce increased p27 levels and apoptosis. Thus, these findings define a signaling pathway during B cell receptor engagement in which the drop in c-Myc levels leads to an increase in p27 levels that promotes apoptosis.  相似文献   

19.
Distinct protein kinase C (PKC) isoforms differentially regulate cellular proliferation in rat microvascular endothelial cells (EC). Overexpression of PKCalpha has little effect on proliferation, whereas PKCdelta slows endothelial cell proliferation and induces S-phase arrest. Analyses were performed on EC overexpressing PKCalpha (PKCalphaEC) or PKCdelta (PKCdeltaEC) to determine the role of specific cell cycle regulatory proteins in the PKCdelta-induced cell cycle arrest. Serum-induced stimulation of cyclins D1, E, and A-associated kinase activity was delayed by 12 h in the PKCdeltaEC line in association with S-phase arrest. However, the protein levels for cyclins D1, E, and A were similar. Nuclear accumulation of cyclin D1 protein in response to serum was also delayed in PKCdeltaEC. In the PKCdeltaEC line, serum induced p27(Kip1) but not p16(Ink4a) or p21(Cip1). Serum did not affect p27(Kip1) levels in the control vascular endothelial cell line. Immunoprecipitation-Western blotting analysis of p27(Kip1) showed serum stimulation of the vascular endothelial cell line resulted in increased amounts of cyclin D1 bound to p27(Kip1). In the PKCdeltaEC line, serum did not increase the amount of cyclin D1 bound to p27(Kip1). Transfection of full-length p27(Kip1) antisense into the PCKdeltaEC line reversed the S-phase arrest and resulted in normal cell cycle progression, suggesting a critical role for p27(Kip1) in the PKCdelta-mediated S-phase arrest.  相似文献   

20.
The regulation of the vertebrate cell cycle is controlled by the function of cyclin-dependent kinases (CDKs), cyclins, and CDK inhibitors. The Xenopus laevis kinase inhibitor, p27(Xic1) (Xic1) is a member of the p21(Cip1)/p27(Kip1)/p57(Kip2) CDK inhibitor family and inhibits CDK2-cyclin E in vitro as well as DNA replication in Xenopus egg extracts. Xic1 is targeted for degradation in interphase extracts in a manner dependent on both the ubiquitin conjugating enzyme, Cdc34, and nuclei. Here we show that ubiquitination of Xic1 occurs exclusively in the nucleus and that nuclear localization of Xic1 is necessary for its degradation. We find that Xic1 nuclear localization is independently mediated by binding to CDK2-cyclin E and by nuclear localization sequences within the C terminus of Xic1. Our results also indicate that binding of Xic1 to CDK2-cyclin E is dispensable for Xic1 ubiquitination and degradation. Moreover, we show that amino acids 180-183 of Xic1 are critical determinants of Xic1 degradation. This region of Xic1 may define a motif of Xic1 essential for recognition by the ubiquitin conjugation machinery or for binding an alternate protein required for degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号