首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hedgehog (Hh) signalling from posterior (P) to anterior (A) cells is the primary determinant of AP polarity in the limb field in insects and vertebrates. Hh acts in part by inducing expression of Decapentaplegic (Dpp), but how Hh and Dpp together pattern the central region of the Drosophila wing remains largely unknown. We have re-examined the role played by Collier (Col), a dose-dependent Hh target activated in cells along the AP boundary, the AP organiser in the imaginal wing disc. We found that col mutant wings are smaller than wild type and lack L4 vein, in addition to missing the L3-L4 intervein and mis-positioning of the anterior L3 vein. We link these phenotypes to col requirement for the local upregulation of both emc and N, two genes involved in the control of cell proliferation, the EGFR ligand Vein and the intervein determination gene blistered. We further show that attenuation of Dpp signalling in the AP organiser is also col dependent and, in conjunction with Vein upregulation, required for formation of L4 vein. A model recapitulating the molecular interplay between the Hh, Dpp and EGF signalling pathways in the wing AP organiser is presented.  相似文献   

2.
Hedgehog (Hh) plays an important role in Drosophila wing patterning by inducing expression of Dpp, which serves to organize the wing globally across the A-P axis. We show here how Hh signalling also plays a direct role in patterning the medial wing through the activation of the Hh-target gene, knot (kn). kn is expressed in Hh-responsive cells near the A-P compartment boundary, where its expression is dependent on fu, a component of Hh signalling. kn is required for the proper positioning of veins 3 and 4 and to prevent ectopic venation between them. Furthermore, the expansion anteriorly of the normal kn expression domain causes an associated anterior shift in the position of vein 3 in the resultant wing. Ectopic expression of kn elsewhere in the wing imaginal disc results in the failure to properly activate the vein initiation genes, rho and Dl. Expression of the gene encoding the EGF-receptor (EGFR), which is required for vein initiation and subsequent differentiation, is normally depressed in the 3-4 intervein region. This downregulation of EGFR in the medial portion of the imaginal disc is dependent on kn activity and ectopic expression of kn inactivates EGFR elsewhere in the wing primordium. We propose kn expression in Hh-responsive cells of the wing blade anlagen during the late third instar creates a zone of cells in the medial wing in which vein primordia cannot be induced. The primordia for veins 3 and 4 are laid down adjacent to the kn-imposed vein-free zone, presumably by a signalling factor (such as Vn) also synthesized in the medial region of the wing.  相似文献   

3.
4.
The stereotyped pattern of Drosophila wing veins is determined by the action of two morphogens, Hedgehog (Hh) and Decapentaplegic (Dpp), which act sequentially to organize growth and patterning along the anterior-posterior axis of the wing primordium. An important unresolved question is how positional information established by these morphogen gradients is translated into localized development of morphological structures such as wing veins in precise locations. In the current study, we examine the mechanism by which two broadly expressed Dpp signaling target genes, optomotor-blind (omb) and brinker (brk), collaborate to initiate formation of the fifth longitudinal (L5) wing vein. omb is broadly expressed at the center of the wing disc in a pattern complementary to that of brk, which is expressed in the lateral regions of the disc and represses omb expression. We show that a border between omb and brk expression domains is necessary and sufficient for inducing L5 development in the posterior regions. Mosaic analysis indicates that brk-expressing cells produce a short-range signal that can induce vein formation in adjacent omb-expressing cells. This induction of the L5 primordium is mediated by abrupt, which is expressed in a narrow stripe of cells along the brk/omb border and plays a key role in organizing gene expression in the L5 primordium. Similarly, in the anterior region of the wing, brk helps define the position of the L2 vein in combination with another Dpp target gene, spalt. The similar mechanisms responsible for the induction of L5 and L2 development reveal how boundaries set by dosage-sensitive responses to a long-range morphogen specify distinct vein fates at precise locations.  相似文献   

5.
6.
During Drosophila wing development, Hedgehog (Hh) signalling is required to pattern the imaginal disc epithelium along the anterior-posterior (AP) axis. The Notch (N) and Wingless (Wg) signalling pathways organise the dorsal-ventral (DV) axis, including patterning along the presumptive wing margin. Here, we describe a functional hierarchy of these signalling pathways that highlights the importance of competing influences of Hh, N, and Wg in establishing gene expression domains. Investigation of the modulation of Hh target gene expression along the DV axis of the wing disc revealed that collier/knot (col/kn), patched (ptc), and decapentaplegic (dpp) are repressed at the DV boundary by N signalling. Attenuation of Hh signalling activity caused by loss of fused function results in a striking down-regulation of col, ptc, and engrailed (en) symmetrically about the DV boundary. We show that this down-regulation depends on activity of the canonical Wg signalling pathway. We propose that modulation of the response of cells to Hh along the future proximodistal (PD) axis is necessary for generation of the correctly patterned three-dimensional adult wing. Our findings suggest a paradigm of repression of the Hh response by N and/or Wnt signalling that may be applicable to signal integration in vertebrate appendages.  相似文献   

7.
8.
Morphogens are classically defined as molecules that control patterning by acting at a distance to regulate gene expression in a concentration-dependent manner. In the Drosophila wing imaginal disc, secreted Hedgehog (Hh) forms an extracellular gradient that organizes patterning along the anterior–posterior axis and specifies at least three different domains of gene expression. Although the prevailing view is that Hh functions in the Drosophila wing disc as a classical morphogen, a direct correspondence between the borders of these patterns and Hh concentration thresholds has not been demonstrated. Here, we provide evidence that the interpretation of Hh signaling depends on the history of exposure to Hh and propose that a single concentration threshold is sufficient to support multiple outputs. Using mathematical modeling, we predict that at steady state, only two domains can be defined in response to Hh, suggesting that the boundaries of two or more gene expression patterns cannot be specified by a static Hh gradient. Computer simulations suggest that a spatial “overshoot” of the Hh gradient occurs, i.e., a transient state in which the Hh profile is expanded compared to the Hh steady-state gradient. Through a temporal examination of Hh target gene expression, we observe that the patterns initially expand anteriorly and then refine, providing in vivo evidence for the overshoot. The Hh gene network architecture suggests this overshoot results from the Hh-dependent up-regulation of the receptor, Patched (Ptc). In fact, when the network structure was altered such that the ptc gene is no longer up-regulated in response to Hh-signaling activation, we found that the patterns of gene expression, which have distinct borders in wild-type discs, now overlap. Our results support a model in which Hh gradient dynamics, resulting from Ptc up-regulation, play an instructional role in the establishment of patterns of gene expression.  相似文献   

9.
10.
Sulfs are secreted sulfatases that catalyse removal of sulfate from Heparan Sulfate Proteoglycans (HSPGs) in the extracellular space. These enzymes are well known to regulate a number of crucial signalling pathways during development. In this study, we report that DSulfatase-1 (DSulf1), the unique Drosophila Sulf protein, is a regulator of Hedgehog (Hh) signalling during wing development. DSulf1 activity is required in both Hh source and Hh receiving cells for proper positioning of Hh target gene expression boundaries. As assessed by loss- and gain-of-function experiments in specific compartments, DSulf1 displays dual functions with respect to Hh signalling, acting as a positive regulator in Hh producing cells and a negative regulator in Hh receiving cells. In either domain, DSulf1 modulates Hh distribution by locally lowering the concentration of the morphogen at the apical pole of wing disc cells. Thus, we propose that DSulf1, by its desulfation catalytic activity, lowers Hh/HSPG interaction in both Hh source and target fields, thereby enhancing Hh release from its source of production and reducing Hh signalling activity in responding cells. Finally, we show that Dsulf1 pattern of expression is temporally regulated and depends on EGFR signalling, a Hh-dependent secondary signal in this tissue. Our data reveal a novel Hh regulatory feedback loop, involving DSulf1, which contributes to maintain and stabilise expression domains of Hh target genes during wing disc development.  相似文献   

11.
12.
13.
It has been proposed that wing veins in Drosophila form at boundaries between discrete sectors of cells that subdivide the anterior-posterior axis of the developing wing primordium. Recently, analysis of events underlying initiation of vein formation suggests that there is a general developmental mechanism for drawing lines between adjacent domains of cells, which is referred to as 'for-export-only-signaling'. In this model, cells in one domain produce a short range signal to which they cannot respond. As a consequence of this constraint, cells lying in a narrow line immediately outside the signal-producing domain are the only cells that can respond to the signal by activating expression of vein-promoting genes.  相似文献   

14.
Genes of the ventrolateral group in Drosophila are dedicated to developmental regulation of Egfr signaling in multiple processes including wing vein development. Among these genes, Egfr encodes the Drosophila EGF-Receptor, spitz (spi) and vein (vn) encode EGF-related ligands, and rhomboid (rho) and Star (S) encode membrane proteins. In this study, we show that rho-mediated hyperactivation of the EGFR/MAPK pathway is required for vein formation throughout late larval and early pupal development. Consistent with this observation, rho activity is necessary and sufficient to activate MAPK in vein primordium during late larval and early pupal stages. Epistasis studies using a dominant negative version of Egfr and a ligand-independent activated form of Egfr suggest that rho acts upstream of the receptor. We show that rho and S function in a common aspect of vein development since loss-of-function clones of rho or S result in nearly identical non-autonomous loss-of-vein phenotypes. Furthermore, mis-expression of rho and S in wild-type and mutant backgrounds reveals that these genes function in a synergistic and co-dependent manner. In contrast, spi does not play an essential role in the wing. These data indicate that rho and S act in concert, but independently of spi, to promote vein development through the EGFR/MAPK signaling pathway.  相似文献   

15.
In both sexes, the Drosophila genital disc comprises three segmental primordia: the female genital primordium derived from segment A8, the male genital primordium derived from segment A9 and the anal primordium derived from segments A10-11. Each segmental primordium has an anterior (A) and a posterior (P) compartment, the P cells of the three segments being contiguous at the lateral edges of the disc. We show that Hedgehog (Hh) expressed in the P compartment differentially signals A cells at the AP compartment border and A cells at the segmental border. As in the wing imaginal disc, cell lineage restriction of the AP compartment border is defined by Hh signalling. There is also a lineage restriction barrier at the segmental borders, even though the P compartment cells of the three segments converge in the lateral areas of the disc. Lineage restriction between segments A9 and A10-11 depends on factors other than the Hh, En and Hox genes. The segmental borders, however, can be permeable to some morphogenetic signals. Furthermore, cell ablation experiments show that the presence of all primordia (either the anal or the genital primordium) during development are required for normal development of genital disc. Collectively, these findings suggest that interaction between segmental primordia is required for the normal development of the genital disc.  相似文献   

16.
17.
James N. Thompson  Jr. 《Genetics》1975,81(2):387-402
Polygenic modifiers affecting the expression of the mutant veinlet were studied to determine whether each acts specifically upon one vein or wing region or whether they affect the venation pattern in some general way. Selection experiments showed that the L4 vein can be modified independently of the L2 and L3 veins. Similarly, the L2 vein can be shortened while the L3 is selected to be longer, although there is some interdependence between the L2 and L3 veins. Assays of heterozygous whole chromosome effects show that different chromosomes are involved in the responses of separate veins, and one polygenic locus causing a decrease in L4 vein length has been isolated. Substitutions of whole chromosomes from selection lines into unselected backgrounds of non-homologous mutants demonstrate that the selected modifiers have the same qualitative effects upon other mutants having similar phenotypes. These results support the hypothesis that the polygenic modifiers affecting veinlet expression function independently of the veinlet locus, presumably by influencing common steps in the developmental processes leading to the formation of individual veins.  相似文献   

18.
N. Usha 《Developmental biology》2010,341(2):389-3898
Animal growth and development is dependent on reiterative use of key signaling pathways such as Hedgehog (Hh) pathway. It is widely believed that Cubitus-interruptus (Ci) mediates all functions of Hh pathway. Here we report that CG32062, the Drosophila homologue of Ataxin-2 Binding Protein 1 (dA2BP1), functions as a cofactor of Ci to specify intervein region between L3 and L4 veins of the adult wing. Specifically, Ci-mediated transactivation of knot/collier (kn) in this region of the developing wing imaginal disc is dependent on dA2BP1 function. Protein interaction studies and chromatin-immunoprecipiation experiments suggest that Ci helps dA2BP1 to bind kn promoter, which in turn may help Ci to activate kn expression. These results suggest a mechanism by which Ci may activate targets such as kn, which do not have classical Ci/Gli-binding sites.  相似文献   

19.
We have identified a novel Drosophila gene, DRacGAP, which behaves as a negative regulator of &Rgr;-family GTPases DRac1 and DCdc42. Reduced function of DRacGAP or increased expression of DRac1 in the wing imaginal disc cause similar effects on vein and sensory organ development and cell proliferation. These effects result from enhanced activity of the EGFR/Ras signalling pathway. We find that in the wing disc, DRac1 enhances EGFR/Ras-dependent activation of MAP Kinase in the prospective veins. Interestingly, DRacGAP expression is negatively regulated by the EGFR/Ras pathway in these regions. During vein formation, local DRacGAP repression would ensure maximal activity of Rac and, in turn, of Ras pathways in vein territories. Additionally, maximal expression of DRacGAP at the vein/intervein boundaries would help to refine the width of the veins. Hence, control of DRacGAP expression by the EGFR/Ras pathway is a previously undescribed feedback mechanism modulating the intensity and/or duration of its signalling during Drosophila development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号