首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Looking into DNA recognition: zinc finger binding specificity   总被引:5,自引:2,他引:3       下载免费PDF全文
We present a quantitative, theoretical analysis of the recognition mechanisms used by two zinc finger proteins: Zif268, which selectively binds to GC-rich sequences, and a Zif268 mutant, which binds to a TATA box site. This analysis is based on a recently developed method (ADAPT), which allows binding specificity to be analyzed via the calculation of complexation energies for all possible DNA target sequences. The results obtained with the zinc finger proteins show that, although both mainly select their targets using direct, pairwise protein–DNA interactions, they also use sequence-dependent DNA deformation to enhance their selectivity. A new extension of our methodology enables us to determine the quantitative contribution of these two components and also to measure the contributions of individual residues to overall specificity. The results show that indirect recognition is particularly important in the case of the TATA box binding mutant, accounting for 30% of the total selectivity. The residue-by-residue analysis of the protein–DNA interaction energy indicates that the existence of amino acid–base contacts does not necessarily imply sequence selectivity, and that side chains without contacts can nevertheless contribute to defining the protein's target sequence.  相似文献   

11.
Human cytomegalovirus (HCMV) is a major renal pathogen in congenitally infected infants and renal allograft recipients. It has been shown that human kidney cells of glomerular, tubular, and vascular origin were all infected by HCMV in vitro. It has previously been demonstrated that the IE2 protein of HCMV directly associates with the zinc finger domain of Egr-1. The zinc finger region of WT1 is a sequence-specific DNA-binding domain which also recognizes the consensus DNA binding site (5'-CGCCCCCGC-3') of Egr-1, thus suggesting a possible interaction between WT1 and IE2. Here we demonstrate that HCMV IE2 binds to the C-terminal region of WT1 containing zinc finger domain in vivo as well as in vitro and that WT1 can inhibit IE2-driven transactivation of the responsive promoter. Our results suggest that WT1 may be able to regulate the functional activity of HCMV IE2. Furthermore, these data may provide new insights into the possible involvement of HCMV in WT1-related pathogeneses.  相似文献   

12.
The zinc finger domain of the Wilms tumor suppressor protein (WT1) contains four canonical Cys(2)His(2) zinc fingers. WT1 binds preferentially to DNA sequences that are closely related to the EGR-1 consensus site. We report the structure determination by both X-ray crystallography and NMR spectroscopy of the WT1 zinc finger domain in complex with DNA. The X-ray structure was determined for the complex with a cognate 14 base-pair oligonucleotide, and composite X-ray/NMR structures were determined for complexes with both the 14 base-pair and an extended 17 base-pair DNA. This combined approach allowed unambiguous determination of the position of the first zinc finger, which is influenced by lattice contacts in the crystal structure. The crystal structure shows the second, third and fourth zinc finger domains inserted deep into the major groove of the DNA where they make base-specific interactions. The DNA duplex is distorted in the vicinity of the first zinc finger, with a cytidine twisted and tilted out of the base stack to pack against finger 1 and the tip of finger 2. By contrast, the composite X-ray/NMR structures show that finger 1 continues to follow the major groove in the solution complexes. However, the orientation of the helix is non-canonical, and the fingertip and the N terminus of the helix project out of the major groove; as a consequence, the zinc finger side-chains that are commonly involved in base recognition make no contact with the DNA. We conclude that finger 1 helps to anchor WT1 to the DNA by amplifying the binding affinity although it does not contribute significantly to binding specificity. The structures provide molecular level insights into the potential consequences of mutations in zinc fingers 2 and 3 that are associated with Denys-Drash syndrome and nephritic syndrome. The mutations are of two types, and either destabilize the zinc finger structure or replace key base contact residues.  相似文献   

13.
14.
15.
Zinc RING finger 3 (ZNRF3) and its homolog RING finger 43 (RNF43) antagonize Wnt signaling in adult stem cells by ubiquitinating Frizzled receptors (FZD), which leads to endocytosis of the Wnt receptor. Conversely, binding of ZNRF3/RNF43 to LGR4-6 – R-spondin blocks Frizzled ubiquitination and enhances Wnt signaling. Here, we present crystal structures of the ZNRF3 ectodomain and its complex with R-spondin 1 (RSPO1). ZNRF3 binds RSPO1 and LGR5-RSPO1 with micromolar affinity via RSPO1 furin-like 1 (Fu1) domain. Anonychia-related mutations in RSPO4 support the importance of the observed interface. The ZNRF3-RSPO1 structure resembles that of LGR5-RSPO1-RNF43, though Fu2 of RSPO1 is variably oriented. The ZNRF3-binding site overlaps with trans-interactions observed in 2:2 LGR5-RSPO1 complexes, thus binding of ZNRF3/RNF43 would disrupt such an arrangement. Sequence conservation suggests a single ligand-binding site on ZNRF3, consistent with the proposed competing binding role of ZNRF3/RNF43 in Wnt signaling.  相似文献   

16.
17.
Inhibition of the RelA(p65) NF-kappaB subunit by Egr-1   总被引:9,自引:0,他引:9  
  相似文献   

18.
19.
Gene silencing by targeted DNA methylation has potential applications in basic research and therapy. To establish targeted methylation in human cell lines, the catalytic domains (CDs) of mouse Dnmt3a and Dnmt3b DNA methyltransferases (MTases) were fused to different DNA binding domains (DBD) of GAL4 and an engineered Cys2His2 zinc finger domain. We demonstrated that (i) Dense DNA methylation can be targeted to specific regions in gene promoters using chimeric DNA MTases. (ii) Site-specific methylation leads to repression of genes controlled by various cellular or viral promoters. (iii) Mutations affecting any of the DBD, MTase or target DNA sequences reduce targeted methylation and gene silencing. (iv) Targeted DNA methylation is effective in repressing Herpes Simplex Virus type 1 (HSV-1) infection in cell culture with the viral titer reduced by at least 18-fold in the presence of an MTase fused to an engineered zinc finger DBD, which binds a single site in the promoter of HSV-1 gene IE175k. In short, we show here that it is possible to direct DNA MTase activity to predetermined sites in DNA, achieve targeted gene silencing in mammalian cell lines and interfere with HSV-1 propagation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号