首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Information pertaining to enzymatic hydrolysis of cellulose by noncomplexed cellulase enzyme systems is reviewed with a particular emphasis on development of aggregated understanding incorporating substrate features in addition to concentration and multiple cellulase components. Topics considered include properties of cellulose, adsorption, cellulose hydrolysis, and quantitative models. A classification scheme is proposed for quantitative models for enzymatic hydrolysis of cellulose based on the number of solubilizing activities and substrate state variables included. We suggest that it is timely to revisit and reinvigorate functional modeling of cellulose hydrolysis, and that this would be highly beneficial if not necessary in order to bring to bear the large volume of information available on cellulase components on the primary applications that motivate interest in the subject.  相似文献   

2.

Background

The conversion of plant biomass to ethanol via enzymatic cellulose hydrolysis offers a potentially sustainable route to biofuel production. However, the inhibition of enzymatic activity in pretreated biomass by lignin severely limits the efficiency of this process.

Results

By performing atomic-detail molecular dynamics simulation of a biomass model containing cellulose, lignin, and cellulases (TrCel7A), we elucidate detailed lignin inhibition mechanisms. We find that lignin binds preferentially both to the elements of cellulose to which the cellulases also preferentially bind (the hydrophobic faces) and also to the specific residues on the cellulose-binding module of the cellulase that are critical for cellulose binding of TrCel7A (Y466, Y492, and Y493).

Conclusions

Lignin thus binds exactly where for industrial purposes it is least desired, providing a simple explanation of why hydrolysis yields increase with lignin removal.
  相似文献   

3.
4.
Cellulose is an abundant and renewable biopolymer that can be used for biofuel generation; however, structural entrapment with other cell wall components hinders enzyme-substrate interactions, a key bottleneck for ethanol production. Biomass is routinely subjected to treatments that facilitate cellulase-cellulose contacts. Cellulases and glucosidases act by hydrolyzing glycosidic bonds of linear glucose β-1,4-linked polymers, producing glucose. Here we describe eight high-temperature-operating cellulases (TCel enzymes) identified from a survey of thermobacterial and archaeal genomes. Three TCel enzymes preferentially hydrolyzed soluble cellulose, while two preferred insoluble cellulose such as cotton linters and filter paper. TCel enzymes had temperature optima ranging from 85°C to 102°C. TCel enzymes were stable, retaining 80% of initial activity after 120 h at 85°C. Two modes of cellulose breakdown, i.e., with endo- and exo-acting glucanases, were detected, and with two-enzyme combinations at 85°C, synergistic cellulase activity was observed for some enzyme combinations.  相似文献   

5.
6.
X Su  J Zhang  RI Mackie  IK Cann 《PloS one》2012,7(8):e43828
The glycoside hydrolases (GH) of Caldicellulosiruptor bescii are thermophilic enzymes, and therefore they can hydrolyze plant cell wall polysaccharides at high temperatures. Analyses of two C. bescii glycoside hydrolases, CbCelA-TM1 and CbXyn10A with cellulase and endoxylanase activity, respectively, demonstrated that each enzyme is highly thermostable under static incubation at 70°C. Both enzymes, however, rapidly lost their enzymatic activities when incubated at 70°C with end-over-end shaking. Since crowding conditions, even at low protein concentrations, seem to influence enzymatic properties, three non-glycoside hydrolase proteins were tested for their capacity to stabilize the thermophilic proteins at high temperatures. The three proteins investigated were a small heat shock protein CbHsp18 from C. bescii, a histone MkHistone1 from Methanopyrus kandleri, and bovine RNase A, from a commercial source. Fascinatingly, each of these proteins increased the thermostability of the glycoside hydrolases at 70°C during end-over-end shaking incubation, and this property translated into increases in hydrolysis of several substrates including the bioenergy feedstock Miscanthus. Furthermore, MkHistone1 and RNase A also altered the initial products released from the cello-oligosaccharide cellopentaose during hydrolysis with the cellodextrinase CbCdx1A, which further demonstrated the capacity of the three non-GH proteins to influence hydrolysis of substrates by the thermophilic glycoside hydrolases. The non-GH proteins used in the present report were small proteins derived from each of the three lineages of life, and therefore expand the space from which different polypeptides can be tested for their influence on plant cell wall hydrolysis, a critical step in the emerging biofuel industry.  相似文献   

7.
A recombinant Trichoderma reesei cellulase was used for the ultrasound‐mediated hydrolysis of soluble carboxymethyl cellulose (CMC) and insoluble cellulose of various particle sizes. The hydrolysis was carried out at low intensity sonication (2.4–11.8 W cm?2 sonication power at the tip of the sonotrode) using 10, 20, and 40% duty cycles. [A duty cycle of 10%, for example, was obtained by sonicating for 1 s followed by a rest period (no sonication) of 9 s.] The reaction pH and temperature were always 4.8 and 50°C, respectively. In all cases, sonication enhanced the rate of hydrolysis relative to nonsonicated controls. The hydrolysis of CMC was characterized by Michaelis‐Menten kinetics. The Michaelis‐Menten parameter of the maximum reaction rate Vmax was enhanced by sonication relative to controls, but the value of the saturation constant Km was reduced. The optimal sonication conditions were found to be a 10% duty cycle and a power intensity of 11.8 W cm?2. Under these conditions, the maximum rate of hydrolysis of soluble CMC was nearly double relative to control. In the hydrolysis of cellulose, an increasing particle size reduced the rate of hydrolysis. At any fixed particle size, sonication at a 10% duty cycle and 11.8 W cm?2 power intensity improved the rate of hydrolysis relative to control. Under the above mentioned optimal sonication conditions, the enzyme lost about 20% of its initial activity in 20 min. Sonication was useful in accelerating the enzyme catalyzed saccharification of cellulose. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1448–1457, 2013  相似文献   

8.
9.
Attempts were made to enhance cellulose saccharification by cellulase using cellulose dissolution as a pretreatment step. Four cellulose dissolution agents, NaOH/Urea solution, N-methylmorpholine-N-oxide (NMMO), ionic liquid (1-butyl-3-methylimidazolium chloride; [BMIM]Cl) and 85% phosphoric acid were employed to dissolve cotton cellulose. In comparison with conventional cellulose pretreatment processes, the dissolution pretreatments were operated under a milder condition with temperature <130 °C and ambient pressure. The dissolved cellulose was easily regenerated in water. The regenerated celluloses exhibited a significant improvement (about 2.7- to 4.6-fold enhancement) on saccharification rate during 1st h reaction. After 72 h, the saccharification yield ranged from 87% to 96% for the regenerated celluloses while only around 23% could be achieved for the untreated cellulose. Even with high crystallinity, cellulose regenerated from phosphoric acid dissolution achieved the highest saccharification rates and yield probably due to its highest specific surface area and lowest degree of polymerization (DP).  相似文献   

10.
The susceptibility of cellulose to enzymatic hydrolysis is affected by the structural features of cellulosic materials. It has been suggested that the crystallinity and surface area of cellulose fibers are the most important structural features in this regard. This study investigated in depth the relative effects of these two structural features upon the enzymatic hydrolysis of cellulose and the change of the structural parameters of cellulose during the course of hydrolysis. It was found that the hydrolysis rate is mainly dependent upon the fine structural order of cellulose which can best be represented by the crystallinity rather than the simple surface area. Monitoring the changes in the structural parameters during the course of reaction showed that surface area is not a major limiting factor that slows hydrolysis in its late stages as has been suggested. This information concerning structural features is used to elucidate the mode of action of cellulase.  相似文献   

11.
Treatment of different cellulose materials with cellulase from Penicillium funiculosum showed a cellulase adsorption-desorption pattern on all materials. The relative rate of adsorption and saccharification (enzyme activity) increases with increasing temperature. At 60° cellulase adsorption increased while the enzyme activity decreased.  相似文献   

12.
Enzymatic hydrolysis of cellulose for sugar production offers advantages of higher conversion, minimal by-product formation, low energy requirements, and mild operating conditions over other chemical conversions. The development of a kinetic model, based on observable, macroscopic properties of the overall system, is helpful in design and economic evaluation of processes for sugar conversion and ethanol production. A kinetic model is presented, incorporating enzyme adsorption, product inhibition, and considers a multiple enzyme and substrate system. This model was capable of simulating saccharification of a lignocellulosic material, rice straw, at high substrate (up to 333 g/L) and enzyme concentrations (up to 9.2 FPU/mL) that are common to proposed process designs.  相似文献   

13.
A multistep approach was taken to investigate the intrinsic kinetics of the cellulase enzyme complex as observed with hydrolysis of noncrystalline cellulose (NCC). In the first stage, published initial rate mechanistic models were built and critically evaluated for their performance in predicting time-course kinetics, using the data obtained from enzymatic hydrolysis experiments performed on two substrates: NCC and alpha-cellulose. In the second stage, assessment of the effect of reaction intermediates and products on intrinsic kinetics of enzymatic hydrolysis was performed using NCC hydrolysis experiments, isolating external factors such as mass transfer effects, physical properties of substrate, etc. In the final stage, a comprehensive intrinsic kinetics mechanism was proposed. From batch experiments using NCC, the time-course data on cellulose, cello-oligosaccharides (COS), cellobiose, and glucose were taken and used to estimate the parameters in the kinetic model. The model predictions of NCC, COS, cellobiose, and glucose profiles show a good agreement with experimental data generated from hydrolysis of different initial compositions of substrate (NCC supplemented with COS, cellobiose, and glucose). Finally, sensitivity analysis was performed on each model parameter; this analysis provides some insights into the yield of glucose in the enzymatic hydrolysis. The proposed intrinsic kinetic model parametrized for dilute cellulose systems forms a basis for modeling the complex enzymatic kinetics of cellulose hydrolysis in the presence of limiting factors offered by substrate and enzyme characteristics.  相似文献   

14.
15.
Pure cellulose (Avicel) was hydrolyzed batchwise at 50 degrees C and pH 4.8 by cellulase from Trichoderma viride (Meicelase CEP). Then the effects of the crystallinity of cellulose as well as the thermal deactivation and product (cellubiose and glucose) inhibition to cellulose on the hydrolysis rate were quantitatively investigated. While these factor had evidently retarded the enzymatic hydrolysis of cellulose to a significant extent, the hydrolysis rates observed could not be explained. For practical purposes, an empirical, simple rate expression was developed which included only one parameter: a overall rate retardation constant. This empirical rate expression held for the hydrolysis of at least two kind of cellulosic materials: Avicel and tissue paper.  相似文献   

16.
An extremely highly active cellobiohydrolase (CBH IIb or Cel6B) was isolated from Chrysosporium lucknowense UV18-25 culture filtrate. The CBH IIb demonstrated the highest ability for a deep degradation of crystalline cellulose amongst a few cellobiohydrolases tested, including C. lucknowense CBH Ia, Ib, IIa, and Trichoderma reesei CBH I and II. Using purified C. lucknowense enzymes (CBH Ia, Ib, and IIb; endoglucanases II and V; beta-glucosidase, xylanase II), artificial multienzyme mixtures were reconstituted, displaying an extremely high performance in a conversion of different cellulosic substrates (Avicel, cotton, pretreated Douglas fir wood) to glucose. These mixtures were much or notably more effective in hydrolysis of the cellulosic substrates than the crude multienzyme C. lucknowense preparation and other crude cellulase samples produced by T. reesei and Penicillium verruculosum. Highly active cellulases are a key factor in bioconversion of plant lignocellulosic biomass to ethanol as an alternative to fossil fuels.  相似文献   

17.
Summary Aspenwood, wheat straw, wheat chaff and alfalfa stems were treated under pressure with either steam or ammonia. The material was then water or methanol/water extracted. The extent of enzymatic hydrolysis of the cellulose portion of the treated substrates was compared using two different cellulases, a commercial preparation, Celluclast, and those from the fungus Trichoderma harzianum. Both steam and ammonia treatment enhanced the accessibility of the cellulose as measured by hydrolysis. Methanol extraction of steamed material generally reduced the access of the enzyme to the cellulose, whereas methanol extraction of ammonia-treated material increased accessibility. The optimum combinations of pretreatment and extraction method depended on the substrate and on the enzyme system; no treatment suitable for all situations could be selected.  相似文献   

18.
The efficient conversion of lignocellulosic materials into fuel ethanol has become a research priority in producing affordable and renewable energy. The pretreatment of lignocelluloses is known to be key to the fast enzymatic hydrolysis of cellulose. Recently, certain ionic liquids (ILs) were found capable of dissolving more than 10wt% cellulose. Preliminary investigations [Dadi, A.P., Varanasi, S., Schall, C.A., 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95, 904-910; Liu, L., Chen, H., 2006. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chin. Sci. Bull. 51, 2432-2436; Dadi, A.P., Schall, C.A., Varanasi, S., 2007. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl. Biochem. Biotechnol. 137-140, 407-421] suggest that celluloses regenerated from IL solutions are subject to faster saccharification than untreated substrates. These encouraging results offer the possibility of using ILs as alternative and non-volatile solvents for cellulose pretreatment. However, these studies are limited to two chloride-based ILs: (a) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), which is a corrosive, toxic and extremely hygroscopic solid (m.p. approximately 70 degrees C), and (b) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl), which is viscous and has a reactive side-chain. Therefore, more in-depth research involving other ILs is much needed to explore this promising pretreatment route. For this reason, we studied a number of chloride- and acetate-based ILs for cellulose regeneration, including several ILs newly developed in our laboratory. This will enable us to select inexpensive, efficient and environmentally benign solvents for processing cellulosic biomass. Our data confirm that all regenerated celluloses are less crystalline (58-75% lower) and more accessible to cellulase (>2 times) than untreated substrates. As a result, regenerated Avicel((R)) cellulose, filter paper and cotton were hydrolyzed 2-10 times faster than the respective untreated celluloses. A complete hydrolysis of Avicel((R)) cellulose could be achieved in 6h given the Trichoderma reesei cellulase/substrate ratio (w/w) of 3:20 at 50 degrees C. In addition, we observed that cellulase is more thermally stable (up to 60 degrees C) in the presence of regenerated cellulose. Furthermore, our systematic studies suggest that the presence of various ILs during the hydrolysis induced different degrees of cellulase inactivation. Therefore, a thorough removal of IL residues after cellulose regeneration is highly recommended, and a systematic investigation on this subject is much needed.  相似文献   

19.
Plant cell wall degradation into fermentable sugars by cellulases is one of the greatest barriers to biofuel production. Expansin protein loosens the plant cell wall by opening up the complex of cellulose microfibrils and polysaccharide matrix components thereby increasing its accessibility to cellulases. We over-expressed cucumber expansin in maize kernels to produce enough protein to assess its potential to serve as an industrial enzyme for applications particularly in biomass conversion. We used the globulin-1 embryo-preferred promoter to express the cucumber expansin gene in maize seed. Expansin protein was targeted to one of three sub-cellular locations: the cell wall, the vacuole, or the endoplasmic reticulum (ER). To assess the level of expansin accumulation in seeds of transgenic kernels, a high throughput expansin assay was developed. The highest expressing plants were chosen and enriched crude expansin extract from those plants was tested for synergistic effects with cellulase on several lignocellulosic substrates. Activity of recombinant cucumber expansin from transgenic kernels was confirmed on these pretreated substrates. The best transgenic lines (ER-targeted) can now be used for breeding to increase expansin expression for use in the biomass conversion industry. Results of these experiments show the success of expansin over-expression and accumulation in transgenic maize seed without negative impact on growth and development and confirm its synergistic effect with cellulase on deconstruction of complex cell wall substrates.  相似文献   

20.

Background

Biomass use for the production of bioethanol or platform chemicals requires efficient breakdown of biomass to fermentable monosaccharides. Lignocellulosic feedstocks often require physicochemical pretreatment before enzymatic hydrolysis can begin. The optimal pretreatment can be different for different feedstocks, and should not lead to biomass destruction or formation of toxic products.

Methods

We examined the influence of six mild sulfuric acid or water pretreatments at different temperatures on the enzymatic degradability of sugar-beet pulp (SBP).

Results

We found that optimal pretreatment at 140°C of 15 minutes in water was able to solubilize 60% w/w of the total carbohydrates present, mainly pectins. More severe treatments led to the destruction of the solubilized sugars, and the subsequent production of the sugar-degradation products furfural, hydroxymethylfurfural, acetic acid and formic acid. The pretreated samples were successfully degraded enzymatically with an experimental cellulase preparation.

Conclusions

In this study, we found that pretreatment of SBP greatly facilitated the subsequent enzymatic degradation within economically feasible time ranges and enzyme levels. In addition, pretreatment of SBP can be useful to fractionate functional ingredients such as arabinans and pectins from cellulose. We found that the optimal combined severity factor to enhance the enzymatic degradation of SBP was between log R'0 = -2.0 and log R'0 = -1.5. The optimal pretreatment and enzyme treatment solubilized up to 80% of all sugars present in the SBP, including ≥90% of the cellulose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号