首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome c is degraded by a large excess of hydrogen peroxide, leading to opening of the heme porphyrin ring and loss of the Soret absorption bands. The kinetic parameters of this reaction have been determined, and it is shown that a small concentration of oxygen is liberated at the same rate as degradation. Low-level chemiluminescence and release of a hydroxylating species also accompany heme destruction. It is proposed that heme iron activates hydrogen peroxide to a more powerful oxidant, perhaps the hydroxyl radical, which remains bound to the heme iron and initiates attack on the porphyrin ring. Chemiluminescence appears to result from a side reaction involving singlet oxygen attack on the alpha-methene bridge, yielding a dioxetane. The in vivo degradation of cytochrome c by excess hydrogen peroxide may interfere with respiration, accelerate aging, and enhance the metabolism of carcinogens.  相似文献   

2.
Nagababu E  Rifkind JM 《Biochemistry》2000,39(40):12503-12511
The reaction of Fe(II) hemoglobin (Hb) but not Fe(III) hemoglobin (metHb) with hydrogen peroxide results in degradation of the heme moiety. The observation that heme degradation was inhibited by compounds, which react with ferrylHb such as sodium sulfide, and peroxidase substrates (ABTS and o-dianisidine), demonstrates that ferrylHb formation is required for heme degradation. A reaction involving hydrogen peroxide and ferrylHb was demonstrated by the finding that heme degradation was inihibited by the addition of catalase which removed hydrogen peroxide even after the maximal level of ferrylHb was reached. The reaction of hydrogen peroxide with ferrylHb to produce heme degradation products was shown by electron paramagnetic resonance to involve the one-electron oxidation of hydrogen peroxide to the oxygen free radical, superoxide. The inhibition by sodium sulfide of both superoxide production and the formation of fluorescent heme degradation products links superoxide production with heme degradation. The inability to produce heme degradation products by the reaction of metHb with hydrogen peroxide was explained by the fact that hydrogen peroxide reacting with oxoferrylHb undergoes a two-electron oxidation, producing oxygen instead of superoxide. This reaction does not produce heme degradation, but is responsible for the catalytic removal of hydrogen peroxide. The rapid consumption of hydrogen peroxide as a result of the metHb formed as an intermediate during the reaction of reduced hemoglobin with hydrogen peroxide was shown to limit the extent of heme degradation.  相似文献   

3.
Hypochlorous acid (HOCl) is generated by myeloperoxidase using chloride and hydrogen peroxide as substrates. HOCl and its conjugate base (OCl) bind to the heme moiety of hemoglobin (Hb) and generate a transient ferric species whose formation and decay kinetics indicate it can participate in protein aggregation and heme destruction along with subsequent free iron release. The oxidation of the Hb heme moiety by OCl was accompanied by marked heme destruction as judged by the decrease in and subsequent flattening of the Soret absorbance peak at 405 nm. HOCl-mediated Hb heme depletion was confirmed by HPLC analysis and in-gel heme staining. Exposure of Hb to increasing concentrations of HOCl produced a number of porphyrin degradation products resulting from oxidative cleavage of one or more of the carbon-methene bridges of the tetrapyrrole ring, as identified by their characteristic HPLC fluorescence and LC-MS. A nonreducing denaturing SDS-PAGE showed several degrees of protein aggregation. Similarly, porphyrin degradation products were identified after exposure of red blood cells to increasing concentrations of HOCl, indicating biological relevance of this finding. This work provides a direct link between Hb heme destruction and subsequent free iron accumulation, as occurs under inflammatory conditions where HOCl is formed in substantial amounts.  相似文献   

4.
Oxidation of cytochrome c peroxidase with hydrogen peroxide to form the initial oxidized intermediate, cytochrome c peroxidase compound I, drastically alters the proton hyperfine nmr spectrum. In contrast to studies of horseradish peroxidase, where the spectrum of horseradish peroxidase compound I is similar to that of the native protein, cytochrome c peroxidase compound I exhibits only broad resonances near 17 and 30 ppm from 2,2-dimethyl-2-silapentane-5-sulfonate. No unique resonances attributable to cytochrome c peroxidase compound II could be identified. These results define the molecular conditions for which resolved hyperfine resonances of the iron(IV) states of heme proteins may be observed when the data presented here are compared with the data from horseradish peroxidase. Oxidation of cytochrome c peroxidase while it is complexed to ferricytochrome c reveals that the heme resonances of cytochrome c are not influenced by the oxidation state of cytochrome c peroxidase.  相似文献   

5.
The effect of complex formation between ferricytochrome c and cytochrome c peroxidase (Ferrocytochrome-c:hydrogen peroxide oxidoreductase, EC 1.11.1.5) on the reduction of cytochrome c by N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), reduced N-methylphenazonium methosulfate (PMSH), and ascorbate has been determined at low ionic strength (pH 7) and 25 degrees C. Complex formation with the peroxidase enhances the rate of ferricytochrome c reduction by the neutral reductants TMPD and PMSH. Under all experimental conditions investigated, complex formation with cytochrome c peroxidase inhibits the ascorbate reduction of ferricytochrome c. This inhibition is due to the unfavorable electrostatic interactions between the ascorbate dianion and the negatively charged cytochrome c-cytochrome c peroxidase complex. Corrections for the electrostatic term by extrapolating the data to infinite ionic strength suggest that ascorbate can reduce cytochrome c peroxidase-bound cytochrome c faster than free cytochrome c. Reduction of cytochrome c peroxidase Compound II by dicyanobis(1,10-phenanthroline)iron(II) (Fe(phen)2(CN)2) is essentially unaffected by complex formation between the enzyme and ferricytochrome c at low ionic strength (pH 6) and 25 degrees C. However, reduction of Compound II by the negatively changed tetracyano-(1,10-phenanthroline)iron(II) (Fe(phen)(CN)4) is enhanced in the presence of ferricytochrome c. This enhancement is due to the more favorable electrostatic interactions between the reductant and cytochrome c-cytochrome c peroxidase Compound II complex then for Compound II itself. These studies indicate that complex formation between cytochrome c and cytochrome c peroxidase does not sterically block the electron-transfer pathways from these small nonphysiological reductants to the hemes in these two proteins.  相似文献   

6.
Two fluorescent heme degradation compounds are detected during autoxidation of oxyhemoglobin. These fluorescent compounds are similar to fluorescent compounds formed when hydrogen peroxide reacts with hemoglobin [E. Nagababu and J. M. Rifkind, Biochem. Biophys. Res. Commun. 247, 592-596 (1998)]. Low levels of heme degradation in the presence of superoxide and catalase are attributed to a reaction involving the superoxide produced during autoxidation. The inhibition of most of the degradation by catalase suggests that the hydrogen peroxide generated during autoxidation of oxyhemoglobin produces heme degradation by the same mechanism as the direct addition of hydrogen peroxide to hemoglobin. The formation of the fluorescent degradation products was inhibited by the peroxidase substrate, ABTS, which reduces ferrylhemoglobin to methemoglobin, indicating that ferrylhemoglobin is produced during the autoxidation of hemoglobin. It is the transient formation of this highly reactive Fe(IV) hemoglobin, which is responsible for most of the heme degradation during autoxidation.  相似文献   

7.
Complex formation between ferricytochrome c and cytochrome c peroxidase inhibits the rate of cyanide binding by ferricytochrome c nearly 90%. The reactions between cytochrome c peroxidase and fluoride or hydrogen peroxide are not significantly affected by complex formation with cytochrome c.  相似文献   

8.
1. The reaction of hydrated electrons with ferricytochrome c was studied using the pulse-radiolysis technique. 2. In 3.3 mM phosphate-buffer (pH 7.2), 100 mM methanol and at a concentration of cytochrome c of less than 20 muM the reduction kinetics of ferricytochrome c by hydrated electrons is a bimolecular process with a rate constant of 4.5-10-10 M-1-S-1 (21 degrees C). 3. At a concentration of cytochrome c of more than 20 muM the apparent order of the reaction of hydrated electrons with ferricytochrome c measured at 650 nm decreases due to the occurrence of a rate-determining first-order process with an estimated rate constant of 5-10-6s-1 (pH 7.2, 21 degrees C). 4. At high concentration of cytochrome c the reaction-time courses measured at 580 and 695 nm appear to be biphasic. A rapid initial phase (75% and 30% of total absorbance change at 580 and 695 nm, respectively), corresponding to the reduction reaction, is followed by a first-order change in absorbance with a rate constant of 1.3-10-5 S-1 (pH 7.2, 21 degrees C). 5. The results are interpreted in a scheme in which first a transient complex between cytochrome c and the hydrated electron is formed, after which the heme iron is reduced and followed by relaxation of the protein from its oxidized to its reduced conformation. 6. It is calculated that one of each three encounters of the hydrated electron and ferricytochrome c results in a reduction of the heme iron. This high reaction probability is discussed in terms of charge and solvent interactions. 7. A reduction mechanism for cytochrome c is favored in which the reduction equivalent from the hydrated electron is transmitted through a specific pathway from the surface of the molecule to the heme iron.  相似文献   

9.
Human myeloperoxidase (MPO) uses hydrogen peroxide generated by the oxidative burst of neutrophils to produce an array of antimicrobial oxidants. During this process MPO is irreversibly inactivated. This study focused on the unknown role of hydrogen peroxide in this process. When treated with low concentrations of H2O2 in the absence of reducing substrates, there was a rapid loss of up to 35% of its peroxidase activity. Inactivation is proposed to occur via oxidation reactions of Compound I with the prosthetic group or amino acid residues. At higher concentrations hydrogen peroxide acts as a suicide substrate with a rate constant of inactivation of 3.9 × 10−3 s−1. Treatment of MPO with high H2O2 concentrations resulted in complete inactivation, Compound III formation, destruction of the heme groups, release of their iron, and detachment of the small polypeptide chain of MPO. Ten of the protein’s methionine residues were oxidized and the thermal stability of the protein decreased. Inactivation by high concentrations of H2O2 is proposed to occur via the generation of reactive oxidants when H2O2 reacts with Compound III. These mechanisms of inactivation may occur inside neutrophil phagosomes when reducing substrates for MPO become limiting and could be exploited when designing pharmacological inhibitors.  相似文献   

10.
The formation of two hemoglobin forms (methemoglobin and nitrite methemoglobin) in native human erythrocytes in the presence of sodium nitrite in suspension was shown. In normal erythrocytes, the interaction of intracellular oxyhemoglobin with nitrite ions results in the formation of methemoglobin, whereas in metabolically exhausted erythrocytes, this leads predominantly to the formation of nitrite methemoglobin. The nitrite methemoglobin reacts with hydrogen peroxide to form reactive intermediates (e.g. peroxynitrous acid) and the products of hemoglobin destruction. During the storage of erythrocyte suspensions containing methemoglobin and modified nitrite methemoglobin, differences in the forms of erythrocytes and the degree of their hemolysis were revealed. It is assumed that the formation of methemoglobin leads to the destruction of erythrocytes.  相似文献   

11.
Oxygen radicals in ulcerative colitis.   总被引:28,自引:0,他引:28  
This article reviews the pathophysiologic concept that superoxide and hydrogen peroxide, generated by activated leukocytes, together with low-molecular-weight chelate iron derived from fecal sources and from denatured hemoglobin, amplify the inflammatory response and subsequent mucosal damage in patients with active episodes of ulcerative colitis. The putative pathogenic mechanisms reviewed are as follows: (1) Dietary iron is concentrated in fecal material owing to normally limited iron absorption. (2) Mucosal bleeding, characteristic of ulcerative colitis, as well as supplemental oral iron therapy for chronic anemia, further conspire to maintain or elevate mucosal iron concentration in colitis. (3) Fenton chemistry, driven especially by leukocyte-generated superoxide and hydrogen peroxide, leads to formation of hydroxyl radicals. (4) The resultant oxidative stress leads to the extension and propagation of crypt abscesses, either through direct membrane disruption by lipid peroxidation or through generation of secondary toxic oxidants such as chloramines. (5) Chemotactic products of lipid peroxidation, including 4-hydroxynonenal, provide positive feedback to accelerate this inflammatory/oxidative process, leading to acute exacerbations of the disease. (6) Other oxidized products, such as oxidized tryptophan metabolites, created by free radical mechanisms in or near the mucosa, may act as carcinogens or tumor promotors that contribute to the exceedingly high incidence of colon carcinoma in patients suffering from chronic ulcerative colitis. In this way, self-sustaining cycles of oxidant formation may amplify flare-ups of inflammation and mucosal injury in ulcerative colitis. This concept, if proved correct by subsequent research, would provide a rationale for several novel clinical approaches to the management of ulcerative colitis, including use of SOD mimetics, iron chelators, and chain-breaking antioxidants.  相似文献   

12.
The oxidation of yeast cytochrome c peroxidase by hydrogen peroxide produces a unique enzyme intermediate, cytochrome c peroxidase Compound I, in which the ferric heme iron has been oxidized to an oxyferryl state, Fe(IV), and an amino acid residue has been oxidized to a radical state. The reduction of cytochrome c peroxidase Compound I by horse heart ferrocytochrome c is biphasic in the presence of excess ferrocytochrome c as cytochrome c peroxidase Compound I is reduced to the native enzyme via a second enzyme intermediate, cytochrome c peroxidase Compound II. In the first phase of the reaction, the oxyferryl heme iron in Compound I is reduced to the ferric state producing Compound II which retains the amino acid free radical. The pseudo-first order rate constant for reduction of Compound I to Compound II increases with increasing cytochrome c concentration in a hyperbolic fashion. The limiting value at infinite cytochrome c concentration, which is attributed to the intracomplex electron transfer rate from ferrocytochrome c to the heme site in Compound I, is 450 +/- 20 s-1 at pH 7.5 and 25 degrees C. Ferricytochrome c inhibits the reaction in a competitive manner. The reduction of the free radical in Compound II is complex. At low cytochrome c peroxidase concentrations, the reduction rate is 5 +/- 3 s-1, independent of the ferrocytochrome c concentration. At higher peroxidase concentrations, a term proportional to the square of the Compound II concentration is involved in the reduction of the free radical. Reduction of Compound II is not inhibited by ferricytochrome c. The rates and equilibrium constant for the interconversion of the free radical and oxyferryl forms of Compound II have also been determined.  相似文献   

13.
Fluorescence in red cells following hydrogen peroxide treatment has been attributed to lipid peroxidation of the membrane. The putative relationship between lipid peroxidation and fluorescence was questioned by the finding that BHT and alpha-tocopherol, which are thought to inhibit lipid peroxidation, do not inhibit the fluorescence detected by flow cytometry. Furthermore, lipid peroxidation induced in red cells by the Fe(III)-ADP-ascorbate system did not produce fluorescence. These results require an alternative explanation for the hydrogen peroxide-induced fluorescence. A role for reduced hemoglobin is indicated by the inhibition of fluorescence by pretreatment of cells with CO that binds strongly to ferrohemoglobin and nitrite that oxidizes ferrohemoglobin. Our earlier studies have shown the formation of fluorescent heme degradation products during the reaction of purified hemoglobin with hydrogen peroxide, which was also inhibited by CO and nitrite pretreatment. The fluorescence produced in red cells after the addition of hydrogen peroxide can, therefore, be attributed to fluorescent heme degradation products.  相似文献   

14.
The dye-decolorizing peroxidase (DyP)-type peroxidase family is a unique heme peroxidase family. The primary and tertiary structures of this family are obviously different from those of other heme peroxidases. However, the details of the structure-function relationships of this family remain poorly understood. We show four high-resolution structures of DyP (EC1.11.1.19), which is representative of this family: the native DyP (1.40 ?), the D171N mutant DyP (1.42 ?), the native DyP complexed with cyanide (1.45 ?), and the D171N mutant DyP associated with cyanide (1.40 ?). These structures contain four amino acids forming the binding pocket for hydrogen peroxide, and they are remarkably conserved in this family. Moreover, these structures show that OD2 of Asp171 accepts a proton from hydrogen peroxide in compound I formation, and that OD2 can swing to the appropriate position in response to the ligand for heme iron. On the basis of these results, we propose a swing mechanism in compound I formation. When DyP reacts with hydrogen peroxide, OD2 swings towards an optimal position to accept the proton from hydrogen peroxide bound to the heme iron.  相似文献   

15.
This work reveals two biochemical effects of hydrogen peroxide treatment on hemoglobin, myoglobin, and cytochrome c. First, these heme proteins rapidly formed covalently crosslinked dimers and polymers detectable by detergent gel electrophoresis. Second, when treated in the presence of radioactive benzo[a]pyrene or 17 beta-estradiol, the heme proteins became covalently labeled. Nonheme proteins exhibited both cross-linking and radioactive labeling upon peroxide treatment in the presence but not the absence of heme protein or free hemin. Benzoyl peroxide or glucose and glucose oxidase effectively replaced direct addition of hydrogen peroxide. These results indicate that adventitious peroxidase activity expressed by oxygen carrying and electron transport proteins yields active oxygen species that can damage these heme proteins and nearby macromolecules, a possible biochemical mechanism for the lethal and other deleterious intracellular effects of peroxide.  相似文献   

16.
The reduction of ferricytochrome c to the ferro form in aqueous alcohol solutions in air by the action of ultrasound and the complete inhibition of this process in the presence of superoxide dismutase indicate the generation of superoxide anions. Further exposure to the ultrasonic field leads to a reverse process of oxidation of the cytochrome c ferro form to the ferri form by hydrogen peroxides and organic peroxides. The addition of catalase protects the cytochrome c ferro form from oxidation to the ferri form. The oxidized form of riboflavin effectively interacts with organic free radicals and superoxide anions to produce a leuko form, which is easily oxidized by air oxygen or the ferri forms of hemoglobin and cyt c to form riboflavin and hydrogen peroxide or the ferro forms of heme-containing proteins, respectively. The recurrence of redox reactions in the presence of riboflavin, organic free radicals, and O2 and the ferri forms of heme-containing proteins suggests that riboflavin can play a role of an antioxidant in the organism. It is supposed that, due to interaction with superoxide anions, riboflavin stabilizes the NO level in the organism under conditions of increased superoxide anion generation and (or) decreased superoxide dismutase activity. A possible role of riboflavin in the modulation of toxic and signal pathways of nitrogen oxide is discussed.  相似文献   

17.
Free radical formation in heme proteins is recognised as a factor in mediating the toxicity of peroxides in oxidative stress. As well as initiating free radical damage, heme proteins damage themselves. Under extreme conditions, where oxidative stress and low pH coincide (e.g., myoglobin in the kidney following rhabdomyolysis and hemoglobin in the CSF subsequent to subarachnoid hemorrhage), peroxide can induce covalent heme to protein cross-linking. In this paper we show that, even at neutral pH, the heme in hemoglobin is covalently modified by oxidation. The product, which we term OxHm, is a "green heme" iron chlorin with a distinct optical spectrum. OxHm formation can be quantitatively prevented by reductants of ferryl iron, e.g., ascorbate. We have developed a simple, robust, and reproducible HPLC assay to study the extent of OxHm formation in the red cell in vivo. We show that hemoglobin is oxidatively damaged even in normal blood; approximately 1 in 2,000 heme groups exist as OxHm in the steady state. We used a simple model (physical exercise) to demonstrate that OxHm increases significantly during acute oxidative stress. The exercise-induced increase is short-lived, suggesting the existence of an active mechanism for repairing or removing the damaged heme proteins.  相似文献   

18.
A relation between pH-induced conformational transitions of horse heart ferricytochrome c and the kinetics of external ligand coordination to heme iron was investigated by optical spectroscopy, circular dichroism and viscometry. The dependencies of both the association, k (a), and dissociation rate constants of cyanide binding on pH were determined from kinetic measurements. The association rate constant exhibits a bell-shaped form of dependence on pH in the region where this protein unfolds. The maximum of the dependence of k (a) on pH is found to be coincident with the pK values of conformational transitions of ferricytochrome c in solutions with both low and high ionic strengths. This observation is explained in terms of ferricytochrome c unfolding, which is characterized by two processes: the gradual opening of the heme crevice accompanied by the detachment of the axial Met80 and its replacement with a water molecule. The former process enhances the rate, whereas the latter results in the inhibition of the rate of cyanide binding.  相似文献   

19.
SUMMARY

Incubation of α-crystallin with glucose and CuSO4 resulted in crystallin changes similar to those observed in cataracts. Examination of the reaction mixtures by polyacrylamide slab gel electrophoresis showed progressive crystallin aggregation through non-disulfide covalent bonds and parallel increases in ultraviolet absorbance and non-tryptophan fluorescence. Both glucose and copper were required; iron was less effective. The reaction can be accelerated by increasing glucose concentration or by utilizing ribose which has a higher percentage of free aldehyde groups than glucose. These observations are consistent with a mechanism involving crystallin glycation. The reaction is mediated by hydrogen peroxide and transition metals since it is inhibited by catalase and by chelating agents. These results, in turn, are consistent with copper-catalyzed autoxidation of glucose and of glycated crystallin. This reaction generates superoxide free radical which dismutates to yield hydrogen peroxide. The latter, in turn, generates hydroxyl radicals in presence of transition metal ions (Fenton reaction). Hydroxyl radical attack leads to cross-linking which is enhanced in glycated proteins. Under hyperglycemic conditions, such as in diabetes mellitus, high levels of glucose occur in insulin-independent tissues such as the lens. Elevated cupremia and oxidative stress are also known to occur in diabetic patients. There-fore, our findings are consistent with crystallin glycation and superimposed oxyradical generation during diabetic cataractogenesis.  相似文献   

20.
J S Vincent  H Kon  I W Levin 《Biochemistry》1987,26(8):2312-2314
The electron paramagnetic resonance spectrum of the ferricytochrome c complex with cardiolipin was observed at temperatures below 20 K. For the low-spin iron(III) heme system complexed with the negatively charged lipid, the tetragonal and rhombic ligand field parameters (delta/lambda = 3.58, V/lambda = 1.82) differ significantly from those (delta/lambda = 2.53, V/lambda = 1.49) of the free ferricytochrome c sample. The g values of the complex (gx = 1.54 +/- 0.02, gy = 2.26 +/- 0.01, gz = 3.02 +/- 0.01) are compared to the values for free ferricytochrome c (gx = 1.25 +/- 0.02, gy = 2.25 +/- 0.01, gz = 3.04 +/- 0.01). Spectral alterations are interpreted in terms of the ligand field changes induced within the heme group by association with the negatively charged phosphoglyceride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号