首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li  Chunyang 《Plant and Soil》1999,214(1-2):165-171
Variation in carbon isotope composition (δ13C), water-use efficiency (WUE) and biomass productivity were compared among three populations of Eucalyptus microtheca F. Muell. in a greenhouse. Seedlings were maintained under one well-watered (Control, keeping the soil at field capacity) and two different water deficit conditions (Drought stress I, keeping the same soil water content; Drought stress II, keeping the same soil water supply). In each treatment, significant population differences in δ13C, WUE, and dry matter accumulation and allocation were detected. A negative correlation between WUE and biomass productivity was detected under control and drought stress I, but a positive correlation under drought stress II. The results suggested that there were different water-use strategies among the populations, the southeastern population with lower WUE may employ a prodigal water-use strategy, whereas the northwestern and central populations with higher WUE may employ a conservative water-use strategy. This knowledge may be useful as criteria for genotype selection within a breeding program for this species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Tree species occupy different hydrological niches and climate warming may affect tree performance in those niches through increased drought stress. However, the effects of climate warming on growth, carbon and water fluxes would differ depending on species’ hydrological niche. Species from wet sites should show a lower growth dependence on precipitation and also lower intrinsic water-use efficiency (WUEi), as compared with species from dry sites which should improve more the WUEi. We test these ideas by comparing radial-growth rates (basal-area increment), climate- and drought-growth associations and WUEi of hackberry (Celtis australis) vs. Aleppo pine (Pinus halepensis) and maritime pine (Pinus pinaster) in two Mediterranean sites located in Spain. Species are subjected to similar regional climate conditions in each site but occupy contrasting local hydrological niches (hackberry in wet sites and pines in dry sites). Climate is warming in both study sites and drought-avoiding pines are responding by showing higher growth rates and improved WUEi. We also found a similar growth dependency on winter-spring precipitation and summer drought of all species and sites and comparable WUEi values and trends, excepting in hackberry from southern Spain which grew more, and showed a higher growth resistance to drought and lower and more stable WUEi values. Variables inferred from tree rings as growth rates and WUEi allow characterizing the hydrological niche of tree species, which may be contingent on site conditions and climate warming.  相似文献   

3.
 Leaf carbon isotope discrimination (Δ), seasonal estimates of the leaf-to-air water vapor gradient on a molar basis (ω), and leaf nitrogen contents were examined in three riparian tree species (Populus fremontii, P. angustifolia, and Salix exigua) along elevational transects in northern and southern Utah USA (1500–2670 m and 600–1820 m elevational gradients, respectively). The ω values decreased with elevation for all species along transects. Plants growing at higher elevations exhibited lower Δ values than plants at lower elevations (P. fremontii, 22.9‰ and 19.5‰, respectively; P. angustifolia, 23.2‰ and 19.2‰, respectively; and S.␣exigua, 21.1‰ and 19.1‰, respectively). Leaf nitrogen content increased with elevation for all species, suggesting that photosynthetic capacity at a given intercellular carbon dioxide concentration was greater at higher elevations. Leaf Δ and nitrogen content values were highly correlated, implying that leaves with higher photosynthetic capacities also had lower intercellular carbon dioxide concentrations. No significant interannual differences were detected in carbon isotope discrimination. Received: 25 February 1996 / Accepted: 8 September 1996  相似文献   

4.
We investigated the response of conifer trees in northern Eurasia to climate change and increasing CO2 over the last century by measuring the carbon isotope ratio in tree rings. Samples from Larix, Pinus and Picea trees growing at 26 high‐latitude sites (59–71°N) from Norway to Eastern Siberia were analysed. When comparing the periods 1861–1890 and 1961–1990, the isotope discrimination and the ratio of the intercellular to ambient CO2 concentration (ci/ca) remained constant for trees growing in mild oceanic climate and under extremely cold and dry continental conditions. This shows a strong coordination of gas‐exchange processes, consisting in a biochemical acclimation and a reduction of the stomatal conductance. The correlation for ci/ca between the two investigated periods was particularly strong for Larix (r2=0.90) and Pinus (r2=0.94), but less pronounced for Picea (r2=0.47). Constant ci/ca under increasing CO2 in the atmosphere resulted in improved intrinsic water‐use efficiency (Wi), the amount of water loss at the leaf level per unit carbon gain. We found that 125 out of 126 trees showed increasing Wi from 1861 to 1890 to 1961 to 1990, with an average improvement of 19.2±0.9% (mean±SE). The adaptation in gas exchange and reduced transpiration of trees growing in this region must have had a strong impact on the water and energy budget, resulting in a drier and warmer surface air layer today than would exist without this vegetation–climate feedback.  相似文献   

5.
Integrative ecophysiological and vegetative responses of Dryas octopetala were measured in response to field perturbations of temperature, precipitation and their interactions in a polar semi-desert in Svalbard, Norway (79°N, 12°E). Leaf carbon isotope discrimination (), total leaf nitrogen concentration and leaf development were determined for photosynthetic leaves collected during the last week of August 1991, after one season of manipulations. Individual leaf weight and the total mass of leaf tissue were significantly lower when water was added, irrespective of temperature regime. Leaf carbon isotope discrimination and estimated long-term c i/c avalues (the ratio of CO2 concentration in leaf intercellular spaces to that in the atmosphere) were significantly higher under all three field manipulation treatments, and was significantly reduced when Dryas was grown under drought conditions in a related greenhouse study. Nitrogen concentrations of plants from the field experiment were significantly lower under warmed conditions regardless of water regime. Our results indicate that changes in environmental conditions in high arctic settings will result in alterations of Dryas leaf gas exchange, as expressed by increases in carbon isotope discrimination, which may be accompanied by shifts in leaf nitrogen content and leaf biomass.  相似文献   

6.
Ten groundnut genotypes were grown under adequately irrigated conditions or subjected to drought during the pod filling phase (83–113 days after sowing) in a medium deep Alfisol at the ICRISAT Centre during the 1986–1987 post-rainy season. Crop growth was measured in both treatments, but transpiration (7) and water-use efficiency (W) were quantified only in the drought treatment. Leaf samples from both treatments were assayed for discrimination against 13CO2 fixed in leaves (Δ) to examine the relationships between Δ, crop growth, and W under field conditions. The shoot dry matter accumulated during the period of drought (Y) ranged from 72–150 g m-2 and was closely related to transpiration. This indicates scope for selection of traits and practices to increase T. Water-use efficiencies ranged from 1.38–2.50 g kg-1 and were inversely related to Δ in eight out of the 10 genotypes. For the other two genotypes, there was evidence that T was underestimated by field measurements. Water-use efficiency and transpiration were not correlated suggesting that these two traits might be combined through breeding. Variation between genotypes was greatest for the partitioning of total dry matter to pods (73%), followed by water-use efficiency (31%) and transpiration (29%). Crop growth rates were negatively related to Δ under irrigated conditions but not under drought.  相似文献   

7.
Mustard (Sinapis alba L.), Argentine canola (Brassica napus L. cv. Westar), Polish canola (Brassica campestris L. cv. Tobin), pea (Pisum sativum L.), durum wheat (Triticum durum L. cv. Kyle) and soft wheat (Triticum aestivum L. cv. Fielder) were grown at Outlook, Saskatchewan, Canada, under irrigated and dryland conditions. Carbon isotope discrimination (Δ) and water-use efficiency (W), defined as grams of above ground dry matter produced per kilogram water used, were negatively correlated in the six field-grown crops. In irrigated plants Δ remained relatively constant (20–21‰) throughout the growing season. However, in dryland plants, Δ declined in response to the progressive depletion of stored soil water (Polish canola, 20-2-18-8‰; mustard, 19.9–18 5‰; pea, 19.9–17 2‰ durum wheat, 19.7–16.4‰; Argentine canola, 19.4–17.6‰; soft wheat, 19.0–17.4‰). Although there were genetic differences in Δ among the species, water availability was the major factor controlling Δ.  相似文献   

8.
Patterns of genetic variation in gas-exchange physiology were analyzed in a 15-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) plantation that contains 25 populations grown from seed collected from across the natural distribution of the species. Seed was collected from 33°30 to 53°12 north latitude and from 170 m to 2930 m above sea level, and from the coastal and interior (Rocky Mountain) varieties of the species. Carbon isotope discrimination () ranged from 19.70() to 22.43() and was closely related to geographic location of the seed source. The coastal variety (20.50 (SE=0.21)) was not significantly different from the interior variety (20.91 (0.15)). Instead, most variation was found within the interior variety; populations from the southern Rockies had the highest discrimination (21.53 (0.20)) (lowest water-use efficiency). Carbon isotope discrimination (), stomatal conductance to water vapor (g), the ratio of intercellular to ambient CO2 concentration (ci/ca), and intrinsic water-use efficiency (A/g) were all correlated with altitude of origin (r=0.76, 0.73, 0.74, and –0.63 respectively); all were statistically significant at the 0.01 level. The same variables were correlated with both height and diameter at age 15 (all at P0.0005). Observed patterns in the common garden did not conform to our expectation of higher WUE, measured by both A/g and , in trees from the drier habitats of the interior, nor did they agree with published in situ observations of decreasing g and with altitude. The genetic effect opposes the altitudinal one, leading to some degree of homeostasis in physiological characteri tics in situ.  相似文献   

9.
Leaf carbonisotope discrimination () was measured for three dominant, semi-arid woodland species along a summer monsoon gradient inthe southwestern United States over a 2-year period. We tested the hypothesis that decreased humidity levels during the growing season along this gradient resulted in lower leaf values. Sites of similar elevation along the transect were selected and the range in monsoon contribution to overall annual precipitation varied from 18 to 58%, while total annual precipitation differed by a maximum of only 25% across this gradient. Leaf values in Quercus gambelii were negatively correlated with , a seasonally-weighted estimate of the evaporative humidity gradient, suggesting that stomatal conductance declined as transpiration potential increased. For two other trees that co-occurred along this gradient, Pinus edulis and Juniperus osteosperma, remained relatively constant despite large variation in . These woodland species represent the full spectrum of responses of carbon isotope discrimination to increases in evaporative potential; that of decline where c i /c a (ratio of internal to ambient CO2 concentration) and presumably stomatal conductance decrease, and that of constancy where whole plant internal adjustments allow c i /c a to remain stable.  相似文献   

10.
Summary To assess the role of photosynthetic acclimation in the response of tropical understory herbs to treefall light gaps, photosynthetic response curves were determined for three species of herbaceous bamboo growing in treatments of sun and shade at Barro Calorado Island, Panama. Increased maximum photosynthetic capacity did not always accompany higher ramet production in the sun treatment. Pharus latifolius reproduced abundantly in both treatments, and produced more ramets and developed higher maximum photosynthetic capacity under higher irradiance. Streptochaeta spicata also produced a high percentage of reproductive ramets in both treatments and produced more ramets in the sun, did not show any significant differences in photosynthetic parameters between treatments. Streptochaeta sodiroana did not change maximum photosynthetic capacity in the sun, and had higher photosynthetic efficiency and lower mortality in the shade. Stable carbon isotope composition of leaves indicated that all three species developed higher water-use efficiency under higher irradiance. Photosynthetic flexibility may contribute to the ability of P. latifolius to reproduce in treefall gaps, whereas S. spicata and S. sodiroana may maintain the ability to fix carbon efficiently in low irradiance even when growing or persisting in gaps.  相似文献   

11.
Zu-Hua Yin  John A. Raven 《Planta》1998,205(4):574-580
The impacts of various nitrogen sources, i.e. NO 3, NH4 + or NH4NO3 in combination with gaseous NH3, on nitrogen-, carbon- and water-use efficiency and 13C discrimination (δ13C) by plants of the C3 species Triticum aestivum L. (wheat) and the C4 species Zea mays L. (maize) were studied. Triticum aestivum and Z. mays were hydroponically grown with 2 mol · m−3 of N supplied as NO 3, NH4 + or NH4NO3 for 21 and 18 d, respectively, and thereafter exposed to gaseous NH3 at 320 μg · m−3 or to ambient air for 7 d. In T. aestivum and Z. mays over a 7-d growth period, nitrogen-use efficiency (NUE) values were influenced by N-sources in the decreasing order NH4NO3-N > NO 3-N > NH4 +-N and NO 3-N > NH4NO3-N > NH4 +-N, respectively. Fumigation with NH3 decreased the NUE values of plants grown with any of the N-forms. During 28- and 7-d growth periods, N-sources affected water-use efficiency (WUE) values in the decreasing order of NH4 +-N > NO 3-N≈NH4NO3-N in non-fumigated T. aestivum, while fumigation with NH3 increased the WUE of NO 3-grown plants. There were insignificant effects of N-sources on WUE values of Z. mays over 25- and 7-d growth periods. Furthermore, δ13C values in plant tissues (leaves, stubble and roots) were higher (less negative) in NH4 +-grown plants of T. aestivum and Z. mays than in those supplied with NH4NO3 or NO 3. Regardless of the N-form supplied to the roots of the plant species, exposure to NH3 caused more-positive δ13C values in the plant tissues. These results indicate that the variations in N-source were associated with small but significant variations in δ13C values in plants of T. aestivum and Z. mays. These differences in δ13C values are in the direction expected from differences in WUE values over long or short growth periods and with differences in the extent of non-Rubisco (ribulose-1,5-bisphosphate carboxylase-oxygenase, EC 4.1.1.39) carboxylate contribution to net C acquisition, as a function of N-source. Received: 12 September 1997 / Accepted: 13 January 1998  相似文献   

12.
Seasonal carbon isotope discrimination in a grassland community   总被引:11,自引:0,他引:11  
Summary Grassland communities of arid western North America are often characterized by a seasonal increase in ambient temperature and evaporative demand and a corresponding decline in soil moisture availability. As the environment changes, particular species could respond differently, which should be reflected in a number of physiological processes. Carbon isotope discrimination varies during photosynthetic activity as a function of both stomatal aperture and the biochemistry of the fixation process, and provides an integrated measure of plant response to seasonal changes in the environment. We measured the seasonal course of carbon isotope discrimination in 42 grassland species to evaluate changes in gas exchange processes in response to these varying environmental factors. The seasonal courses were then used to identify community-wide patterns associated with life form, with phenology and with differences between grasses and forbs. Significant differences were detected in the following comparisons: (1) Carbon isotope discrimination decreased throughout the growing season; (2) perennial species discriminated less than annual species; (3) grasses discriminated less than forbs; and (4) early flowering species discriminated more than the later flowering ones. These comparisons suggested that (1) species active only during the initial, less stressful months of the growing season used water less efficiently, and (2) that physiological responses increasing the ratio of carbon fixed to water lost were common in these grassland species, and were correlated with the increase in evaporative demand and the decrease in soil moisture.  相似文献   

13.
The seasonal variation in 13C values was measured in leaves from 17 upper canopy, five mid- canopy and in four gap tree species, as well as in five epiphyte and five vine species, in a seasonally dry lowland tropical forest at Parque Natural Metropolitano near Panama City, Republic of Panama. No seasonal variation was detected in the 13C values of mature exposed leaves from either the upper or mid- canopy. However, canopy position did influence the 13C value. The mean isotopic composition of leaves from the mid- canopy was more negative than that of the upper canopy throughout the year. The 13C value was also influenced by leaf development, with juvenile leaves on average 1.5 less negative than mature leaves. The five epiphyte species exhibited 13C values that were typical of crassulacean acid metabolism (CAM). Codonanthe uleana, with isotopic values of –19.9 to –22.1, is only the second species in the Gesneriaceae reported to express CAM, whereas values between –14.6 and –22.0 indicate that Peperomia macrostachya can exhibit different degrees of CAM. The isotopic composition of exposed mature leaves from the vines showed little interspecific variation and was similar to the upper-canopy leaves of the trees.  相似文献   

14.
Ecophysiological differences related to photosynthesis were compared in holm oak Quercus ilex leaves from undisturbed holm-oak vegetation, resprouts after fire and resprouts after tree-fell. No significant differences in any parameter measured were observed between the two kinds of resprout throughout the first growing season following disturbance. Resprouting leaves showed lower carbon isotope discrimination () and intercellular CO2 concentration (p i), and higher photosynthesis, leaf conductance and transpiration rates than leaves from undisturbed stands. Nitrogen, soluble protein content and ribulose bisphosphate carboxylase (RuBPCase) activity were 88%, 96% and 45% higher respectively, in both kinds of resprout. The results indicate that photosynthetic capacity, rather than stomatal conductance, is the limiting factor in photosynthesis in resprouts, Chlorophyll content and chlorophyll a/b ratio did not differ between resprouts and undisturbed leaves, indicating that the observed differences were not a result of differences in light environment during leaf development. Leaf mass per area (LMA), was 80% higher in the resprouts, and was negatively related (r=–0.86) to and positively related (r=0.87) to N content. Enhanced carbon assimilation after disturbances resulted in higher water use efficiency, as indicated by lower values in the resprouts. We conclude that the cause of defoliation was not relevant in the physiology of the resprouts, suggesting the importance of underground organs.  相似文献   

15.
16.
刘莹  李鹏  沈冰  冯朝红  刘琦  张祎 《生态学报》2017,37(9):3055-3064
本研究以黄土高原乡土草种白羊草(Bothriochloa ischaemum(L.)Keng.)为研究对象,采用盆栽控制实验,比较白羊草在3个水分处理(CK80%FC、MS60%FC和SS 40%FC)下的生物量积累和分配模式、瞬时水分利用效率(WUE)、不同部位(新叶、老叶、茎、细根、粗根)的稳定碳同位素组成(δ~(13)C)和碳同位素分辨率(Δ~(13)C)及其相互关系,以及干旱胁迫下影响水分利用效率的主导环境因子。结果表明:1)重度干旱胁迫显著降低植物整体生物量,显著增加根冠比和细根生物量比例;2)随着干旱胁迫加剧,白羊草各器官的δ~(13)C均呈上升趋势,Δ~(13)C呈减小趋势,SS处理不同器官δ~(13)C和Δ~(13)C没有显著差异,CK和MS处理的各器官δ~(13)C均值表现分别为细根粗根老叶新叶茎、细根新叶老叶粗根茎,CK和MS处理Δ~(13)C的值总体呈根叶茎。3)新叶的δ~(13)CNL和Δ~(13)CNL与WUE的相关系数均最大,说明利用稳定碳同位素方法测定白羊草水分利用效率具有可行性。4)不同水分处理的WUE的主导影响因子不同,CK、MS、SS水分处理WUE分别受到叶面温度、大气水汽压亏缺和空气温度的影响最大。为采用稳定碳同位素方法指示白羊草水分利用效率可行性及阐明植物的胁迫响应机制提供理论依据。  相似文献   

17.
Optimal water-use efficiency in a California shrub   总被引:4,自引:2,他引:2  
Abstract. The stomatal behaviour of a California chaparral shrub was compared with that predicted by a model of optimal water-use efficiency (Cowan & Farquhar, 1977). The daily courses of stomatal conductance, evaporation, and assimilation were calculated as was the derivative of evaporation with respect to assimilation (∂ E /∂ A ). The derivative ∂ E /∂ A was not constant, and the measured courses of conductance were not optimal, but daily courses of evaporation and assimilation were usually very close to what would have been predicted had ∂ E /∂ A been constant. This discrepancy arises because evaporation and assimilation are sometimes so severely constrained by the microenvironment that stomatal conductance has almost no effect on them.  相似文献   

18.
Drake PL  Franks PJ 《Oecologia》2003,137(3):321-329
This study investigated seasonal variation in the origin of water used by plants in a riparian tropical rainforest community and explored linkages between plant water source, plant xylem hydraulic conductivity and response to the onset of dry conditions. The study focused on five co-dominant canopy species, comprising three tree species (Doryphora aromatica, Argyrodendron trifoliolatum, Castanospora alphandii) and two climbing palms (Calamus australis and Calamus caryotoides). Stable isotope ratios of oxygen in water (18O) from soil, groundwater, stream water and plant xylem measured in the wet season and the subsequent dry season revealed water resource partitioning between species in the dry season. Measurement of stem-area-specific hydraulic conductivity (KS) in the wet season and subsequent dry season showed a significant dry-season loss of KS in three of the five species (Castanospora alphandii, Calamus australis and C. caryotoides) and a decrease in mean KS for all species. This loss of hydraulic conductivity was positively correlated with the difference between wet-season and dry-season midday leaf water potentials and with leaf carbon isotope discrimination, indicating that plants that were less susceptible to loss of conductivity had greater control over transpiration rate and were more water-use efficient.  相似文献   

19.
Genotypic and environmental (soil water regime and N level) variation in carbon isotope discrimination (CID) in relation to the gas exchange, transpiration efficiency (A/T), and biomass production were investigated in field experiments using eleven rice (Oryza sativa L.) genotypes. The results showed that genotype was more dominant for variation in CID than in total biomass. Genotypic ranking in CID was consistent across environments because of small genotype × environment interactions. Japonica genotypes tended to have lower CID than indica genotypes. Higher soil water and lower N rate significantly increased CID. Variation in CID was slightly smaller for water regime than for genotype. There was a negative correlation between CID andA/T among genotypes within water regimes. Genotypic variation in CID was associated mainly with variation in stomatal conductance under all soil water regimes and with photosynthetic capacity in late growth stages under aerobic soil conditions. The decrease in CID at higher N was probably due to lower stomatal conductance under aerobic soil conditions and to higher photosynthetic rates under submerged soil conditions. The correlation between biomass and CID was not clear in aerobic soil, whereas it was positive in submerged soil, which indicated that the significance of lower or higher CID for improving biomass productivity may differ under different soil water regimes. Overall, the results implied a possible use of CID as a selection criterion for genotypic improvement inA/T and productivity in rice.  相似文献   

20.
Summary Under conditions where both plants had permanently low water status, the mistletoe, Amyema miquelii (Lehm. ex Miq.) Tiegh., had lower nitrogen contents in leaf tissue than its host, Eucalyptus behriana F. Muell. The parasite transpired less than its host which is consistent with the hypothesis that mistletoe transpiration acts as a nitrogen gathering mechanism. Nitrogen and phosphorus contents were generally low in both plants; they were positively correlated, and mistletoes reduced nutrient contents of infested hosts. The carbon discrimination ratio, 13C (a measure of water-use efficiency) of each plant was within the range reported for other mistletoes and their hosts. Although it did not differ significantly between host and parasite it indicated lower water-use efficiency in the mistletoe. For the nitrogen content of host leaves the gradient within the pair, (13C), is much lower compared to the correlation given by Ehleringer et al. (1985). It is concluded that at permanently low water status on nitrogen and phosphorus deficient soils a water-saving strategy accompanied with slow growth is more appropriate for both mistletoe and host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号