首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transfer of type-1 helper T-conditioned (Th1-conditioned) cells promotes functional recovery with enhanced axonal remodeling after spinal cord injury (SCI). This study explored the molecular mechanisms underlying the beneficial effects of pro-inflammatory Th1-conditioned cells after SCI. The effect of Th1-conditioned cells from interferon-γ (ifn-γ) knockout mice (ifn-γ−/− Th1 cells) on the recovery after SCI was reduced. Transfer of Th1-conditioned cells led to the activation of microglia (MG) and macrophages (MΦs), with interleukin 10 (IL-10) upregulation. This upregulation of IL-10 was reduced when ifn-γ−/− Th1 cells were transferred. Intrathecal neutralization of IL-10 in the spinal cord attenuated the effects of Th1-conditioned cells. Further, IL-10 is robustly secreted from Th1-conditioned cells in an ifn-γ-dependent manner. Th1-conditioned cells from interleukin 10 knockout (il-10−/−) mice had no effects on recovery from SCI. These findings demonstrate that ifn-γ-dependent secretion of IL-10 from Th1 cells, as well as native MG/MΦs, is required for the promotion of motor recovery after SCI.  相似文献   

2.
After central nervous system (CNS) trauma, axons have a low capacity for regeneration. Regeneration failure is associated with a muted regenerative response of the neuron itself, combined with a growth-inhibitory and cytotoxic post-injury environment. After spinal cord injury (SCI), resident and infiltrating immune cells (especially microglia/macrophages) contribute significantly to the growth-refractory milieu near the lesion. By targeting both the regenerative potential of the axon and the cytotoxic phenotype of microglia/macrophages, we may be able to improve CNS repair after SCI. In this review, we discuss molecules shown to impact CNS repair by affecting both immune cells and neurons. Specifically, we provide examples of pattern recognition receptors, integrins, cytokines/chemokines, nuclear receptors and galectins that could improve CNS repair. In many cases, signaling by these molecules is complex and may have contradictory effects on recovery depending on the cell types involved or the model studied. Despite this caveat, deciphering convergent signaling pathways on immune cells (which affect axon growth indirectly) and neurons (direct effects on axon growth) could improve repair and recovery after SCI. Future studies must continue to consider how regenerative therapies targeting neurons impact other cells in the pathological CNS. By identifying molecules that simultaneously improve axon regenerative capacity and drive the protective, growth-promoting phenotype of immune cells, we may discover SCI therapies that act synergistically to improve CNS repair and functional recovery.  相似文献   

3.
Objectives:S100-β has been identified as a sensitive biomarker in central nervous system injuries. However, the functions and mechanisms of S100-β are unknown in spinal cord injury.Methods:Spinal cord injury (SCI) mouse model was generated by surgical operation, microglia activation model was established by inducing BV-2 cells with LPS. The SCI model was evaluated by Basso-Beattie-Bresnahan (BBB) behavioral score, HE staining, and Nissl staining. The expression level of S100-β was detected by qRT-PCR, western blot, and immunofluorescence. qRT-PCR and western blot were used to detect the expression of iNOS and CD16. Pro-inflammatory cytokines TNF-α and IL-1β levels were detected by qRT-PCR and ELISA.Results:The expression of IL-1β, TNF-α, iNOS, and CD16 increased at 3rd day after SCI. In BV2 microglia, LPS treatment promoted the expression of S100-β, IL-1β, TNF-α, iNOS, and CD16. Knockdown of S100-β reduced the expression of iNOS stimulated by LPS. Over-expression of S100-β increased IL-1β and TNF-α, and S100-β inhibition suppressed IL-1β and TNF-α. In SCI mice, knockdown of S100-β attenuated the spinal cord injury and inhibited the expression of iNOS, IL-1β, and TNF-α.Conclusions:Down-regulation of S100-β could inhibit the pathogenesis of SCI and inhibit the activation of M1 macrophages. S100-β may be a useful diagnostic biomarker or therapeutic target for SCI.  相似文献   

4.
Alzheimer''s disease (AD), the most common cause of dementia in the elderly, is pathologically characterized by extracellular deposition of amyloid‐β peptides (Aβ) and microglia‐dominated inflammatory activation in the brain. p38α‐MAPK is activated in both neurons and microglia. How p38α‐MAPK in microglia contributes to AD pathogenesis remains unclear. In this study, we conditionally knocked out p38α‐MAPK in all myeloid cells or specifically in microglia of APP‐transgenic mice, and examined animals for AD‐associated pathologies (i.e., cognitive deficits, Aβ pathology, and neuroinflammation) and individual microglia for their inflammatory activation and Aβ internalization at different disease stages (e.g., at 4 and 9 months of age). Our experiments showed that p38α‐MAPK‐deficient myeloid cells were more effective than p38α‐MAPK‐deficient microglia in reducing cerebral Aβ and neuronal impairment in APP‐transgenic mice. Deficiency of p38α‐MAPK in myeloid cells inhibited inflammatory activation of individual microglia at 4 months but enhanced it at 9 months. Inflammatory activation promoted microglial internalization of Aβ. Interestingly, p38α‐MAPK‐deficient myeloid cells reduced IL‐17a‐expressing CD4‐positive lymphocytes in 9 but not 4‐month‐old APP‐transgenic mice. By cross‐breeding APP‐transgenic mice with Il‐17a‐knockout mice, we observed that IL‐17a deficiency potentially activated microglia and reduced Aβ deposition in the brain as shown in 9‐month‐old myeloid p38α‐MAPK‐deficient AD mice. Thus, p38α‐MAPK deficiency in all myeloid cells, but not only in microglia, prevents AD progression. IL‐17a‐expressing lymphocytes may partially mediate the pathogenic role of p38α‐MAPK in peripheral myeloid cells. Our study supports p38α‐MAPK as a therapeutic target for AD patients.  相似文献   

5.
Microglia, the resident immune cells of the central nervous system (CNS), monitor the brain for disturbances of tissue homeostasis by constantly moving their fine processes. Microglia respond to tissue damage through activation of ATP/ADP receptors followed by directional process extension to the damaged area. A common feature of several neurodegenerative diseases is the loss of norepinephrine, which might contribute to the associated neuroinflammation. We carried out a high resolution analysis of the effects of norepinephrine (NE) on microglial process dynamics in acute brain slices from mice that exhibit microglia-specific enhanced green fluorescent protein expression. Bath application of NE to the slices resulted in significant process retraction in microglia. Analysis of adrenergic receptor expression with quantitative PCR indicated that resting microglia primarily express β2 receptors but switch expression to α2A receptors under proinflammatory conditions modeled by LPS treatment. Despite the differential receptor expression, NE caused process retraction in both resting and LPS-activated microglia cultured in the gelatinous substrate Matrigel in vitro. The use of subtype-selective receptor agonists and antagonists confirmed the involvement of β2 receptors in mediating microglial process dynamics in resting cells and α2A receptors in activated cells. Co-application of NE with ATP to resting microglia blocked the ATP-induced process extension and migration in isolated microglia, and β2 receptor antagonists prolonged ATP effects in brain slice tissues, suggesting the presence of cross-talk between adrenergic and purinergic signaling in microglia. These data show that the neurotransmitter NE can modulate microglial motility, which could affect microglial functions in pathogenic situations of either elevated or reduced NE levels.  相似文献   

6.
The clearance of debris after injuries to the nervous system is a critical step for restoration of the injured neural network. Microglia are thought to be involved in elimination of degenerating neurons and axons in the central nervous system (CNS), presumably restoring a favorable environment after CNS injuries. However, the mechanism underlying debris clearance remains elusive. Here, we establish an in vitro assay system to estimate phagocytosis of axon debris. We employed a Wallerian degeneration model by cutting axons of the cortical explants. The cortical explants were co-cultured with primary microglia or the MG5 microglial cell line. The cortical neurites were then transected. MG5 cells efficiently phagocytosed the debris, whereas primary microglia showed phagocytic activity only when they were activated by lipopolysaccharide or interferon-β. When MG5 cells or primary microglia were co-cultured with degenerated axons, p38 mitogen-activated protein kinase (MAPK) was activated in these cells. Engulfment of axon debris was blocked by the p38 MAPK inhibitor SB203580, indicating that p38 MAPK is required for phagocytic activity. Receptors that recognize dying cells appeared not to be involved in the process of phagocytosis of the axon debris. In addition, the axons undergoing Wallerian degeneration did not release lactate dehydrogenase, suggesting that degeneration of the severed axons and apoptosis may represent two distinct self-destruction programs. We observed regrowth of the severed neurites after axon debris was removed. This finding suggests that axon debris, in addition to myelin debris, is an inhibitory factor for axon regeneration.Axon degeneration is an active, tightly controlled, and versatile process of axon segment self-destruction. The lesion-induced degeneration process was first described by Waller (1) and has since been known as Wallerian degeneration (2, 3). This degeneration involves rapid blebbing and fragmentation of an entire axonal stretch into short segments, which are then removed by locally activated phagocytic cells. Phagocytic removal of damaged axons and their myelin sheaths distal to the injury is important for creating a favorable environment for axonal regeneration in the nervous system. Although the debris of degenerated axons and myelin is cleared by phagocytes in the peripheral nervous system (PNS), the debris is removed very slowly in the central nervous system (CNS)3 (4, 5). This is considered to be one of the obstacles for regeneration of the injured axons in the CNS.Apoptotic neurons are also engulfed by activated phagocytic cells. Apoptosis is very well documented in the CNS where a significant proportion of neurons undergo programmed cell death (6). To prevent the diffusion of damaging degradation products into surrounding tissues, dying neurons are phagocytosed. In the brain, apoptotic cells are engulfed mainly by the resident population of phagocytes known as microglia. Microglia are generally considered to be immune cells of the CNS (7). They respond to any kind of pathology with a reaction termed “microglial activation.” After injuries to the CNS, microglia react within a few hours with a migratory response toward the lesion site.Although insight into the mechanism of phagocytosis of dying cells by microglia has improved, little is known about the mechanism of clearance of degenerated axons and myelin debris by microglia after axonal injury in the CNS. Interestingly, the axons undergoing Wallerian degeneration do not seem to possess detectable activation of the caspase family (8), suggesting that Wallerian degeneration and apoptosis may represent two distinct self-destruction programs. Thus, the mechanism of microglial phagocytosis of dying cells might be different from that of axon/myelin debris. We aimed to elucidate the mechanism of debris clearance by microglia after an axonal injury. We established an in vitro assay system to estimate phagocytosis of degenerated axon debris. We found that p38 mitogen-activated protein kinase (MAPK) was critical for the phagocytic activity of microglia. Treatment with lipopolysaccharide (LPS) or interferon-β (IFN-β) was necessary for the primary microglia to become phagocytic. In addition, clearance of degenerated axon debris allowed axonal growth from the severed neurites, suggesting that removal of the axon debris provides a favorable environment for axonal regeneration.  相似文献   

7.
Brain inflammation plays a central role in numerous brain pathologies. Microglia and astrocytes are the main effector cells that become activated when an inflammatory process takes place within the central nervous system. α-melanocyte-stimulating hormone (α-MSH) is a neuropeptide with proven anti-inflammatory properties. It binds with highest affinity to the melanocortin receptor 4 (MC4R), which is present in astrocytes and upon activation triggers anti-inflammatory pathways. The aim of this research was to identify anti-inflammatory mediators that may participate in the immunomodulatory effects of melanocortins in glial cells. Since peroxisome proliferator-activated receptors (PPARs) have recently been implicated in the modulation of inflammation, we investigated the effect of an α-MSH analog, [Nle4, D-Phe7]-α-MSH (NDP-α-MSH), on PPAR-β and PPAR-γ gene and protein expression in rat primary astrocytes and microglia. We initially demonstrated that rat primary microglia express MC4R and showed that treatment with NDP-α-MSH increases PPAR-γ protein levels and strongly decreases PPAR-β levels in both astrocytes and microglia. We also showed that extracellular signal-regulated kinase 1/2 (ERK1/2)–mediated signaling is partially involved in these effects in a cell-specific fashion. Finally, we showed that NDP-α-MSH stimulates the release of the anti-inflammatory cytokines IL-10 and TGF-β from microglia and astrocytes, respectively. The presented data suggest a role for IL-10 and TGF-β in the protective action of melanocortins and a connection between MC4R pathway and that of the nuclear receptor PPAR-γ. This is the first report providing evidence that MC4R is expressed in rat primary microglia and that melanocortins modulate PPAR levels in glial cells. Our findings provide new insights into the mechanisms underlying the activation of glial MC4R and open perspectives for new therapeutic strategies for the treatment of inflammation-mediated brain diseases.  相似文献   

8.
9.
10.
11.
Accumulation of β-amyloid (Aβ) and resultant inflammation are critical pathological features of Alzheimer disease (AD). Microglia, a primary immune cell in brain, ingests and degrades extracellular Aβ fibrils via the lysosomal system. Autophagy is a catabolic process that degrades native cellular components, however, the role of autophagy in Aβ degradation by microglia and its effects on AD are unknown. Here we demonstrate a novel role for autophagy in the clearance of extracellular Aβ fibrils by microglia and in the regulation of the Aβ-induced NLRP3 (NLR family, pyrin domain containing 3) inflammasome using microglia specific atg7 knockout mice and cell cultures. We found in microglial cultures that Aβ interacts with MAP1LC3B-II via OPTN/optineurin and is degraded by an autophagic process mediated by the PRKAA1 pathway. We anticipate that enhancing microglial autophagy may be a promising new therapeutic strategy for AD.  相似文献   

12.
A disintegrin and metalloprotease 17 (ADAM17) is a sheddase with important substrates including tumor necrosis factor-α (TNF-α) and its receptors, the p75 neurotrophin receptor (p75NTR), and members of the epidermal growth factor family. The rationale of this study was to inhibit ADAM17-induced shedding of soluble TNF-α in order to reduce detrimental inflammation after spinal cord injury (SCI). However, using the specific ADAM17 blocker BMS-561392 in neuronal and glial cell cultures, we show that proper functioning of ADAM17 is vital for oligodendrocyte and microglia survival in a p44 MAPK-dependent manner. In contrast, genetic ablation of ADAM17 specifically increases microglial death. Surprisingly, although blocking ADAM17 in vivo does not substantially change the ratio between membrane-bound and soluble TNF-α, it increases expression of the pro-apoptotic marker Bax and microglial apoptosis while impairing functional recovery after SCI. These data suggest that ADAM17 is a key survival factor for microglial cells after SCI.  相似文献   

13.
14.
Microglia are the primary immune cells in the central nervous system, which plays a vital role in neuron development and neurodegenerative diseases. Microglial precursors in peripheral hematopoietic tissues colonize the central nervous system during early embryogenesis. However, how intrinsic and extrinsic signals integrate to regulate microglia’s differentiation remains undefined. In this study, we identified the cerebral white matter hyperintensities susceptibility gene, programmed cell death protein 11 (PDCD11), as an essential factor regulating microglia differentiation. In zebrafish, pdcd11 deficiency prevents the differentiation of the precursors to mature brain microglia. Although, the inflammatory featured macrophage brain colonization is augmented. At 22 h post fertilization, the Pdcd11-positive cells on the yolk sac are distinct from macrophages and neutrophils. Mechanistically, PDCD11 exerts its physiological role by differentially regulating the functions of nuclear factor-kappa B family members, P65 and c-Rel, suppressing P65-mediated expression of inflammatory cytokines, such as tnfα, and enhancing the c-Rel-dependent appearance of tgfβ1. The present study provides novel insights in understanding microglia differentiation during zebrafish development.Subject terms: Cell biology, Molecular biology  相似文献   

15.
Microglia are immune cells that release factors, including proinflammatory cytokines, nitric oxide (NO), and neurotrophins, following activation after disturbance in the brain. Elevation of intracellular Ca2+ concentration ([Ca2+]i) is important for microglial functions such as the release of cytokines and NO from activated microglia. There is increasing evidence suggesting that pathophysiology of neuropsychiatric disorders is related to the inflammatory responses mediated by microglia. Brain-derived neurotrophic factor (BDNF) is a neurotrophin well known for its roles in the activation of microglia as well as in pathophysiology and/or treatment of neuropsychiatric disorders. In this study, we sought to examine the underlying mechanism of BDNF-induced sustained increase in [Ca2+]i in rodent microglial cells. We observed that canonical transient receptor potential 3 (TRPC3) channels contribute to the maintenance of BDNF-induced sustained intracellular Ca2+ elevation. Immunocytochemical technique and flow cytometry also revealed that BDNF rapidly up-regulated the surface expression of TRPC3 channels in rodent microglial cells. In addition, pretreatment with BDNF suppressed the production of NO induced by tumor necrosis factor α (TNFα), which was prevented by co-adiministration of a selective TRPC3 inhibitor. These suggest that BDNF induces sustained intracellular Ca2+ elevation through the up-regulation of surface TRPC3 channels and TRPC3 channels could be important for the BDNF-induced suppression of the NO production in activated microglia. We show that TRPC3 channels could also play important roles in microglial functions, which might be important for the regulation of inflammatory responses and may also be involved in the pathophysiology and/or the treatment of neuropsychiatric disorders.  相似文献   

16.

Background

Although macrophages (MΦ) are known as essential players in wound healing, their contribution to recovery from spinal cord injury (SCI) is a subject of debate. The difficulties in distinguishing between different MΦ subpopulations at the lesion site have further contributed to the controversy and led to the common view of MΦ as functionally homogenous. Given the massive accumulation in the injured spinal cord of activated resident microglia, which are the native immune occupants of the central nervous system (CNS), the recruitment of additional infiltrating monocytes from the peripheral blood seems puzzling. A key question that remains is whether the infiltrating monocyte-derived MΦ contribute to repair, or represent an unavoidable detrimental response. The hypothesis of the current study is that a specific population of infiltrating monocyte-derived MΦ is functionally distinct from the inflammatory resident microglia and is essential for recovery from SCI.

Methods and Findings

We inflicted SCI in adult mice, and tested the effect of infiltrating monocyte-derived MΦ on the recovery process. Adoptive transfer experiments and bone marrow chimeras were used to functionally distinguish between the resident microglia and the infiltrating monocyte-derived MΦ. We followed the infiltration of the monocyte-derived MΦ to the injured site and characterized their spatial distribution and phenotype. Increasing the naïve monocyte pool by either adoptive transfer or CNS-specific vaccination resulted in a higher number of spontaneously recruited cells and improved recovery. Selective ablation of infiltrating monocyte-derived MΦ following SCI while sparing the resident microglia, using either antibody-mediated depletion or conditional ablation by diphtheria toxin, impaired recovery. Reconstitution of the peripheral blood with monocytes resistant to ablation restored the lost motor functions. Importantly, the infiltrating monocyte-derived MΦ displayed a local anti-inflammatory beneficial role, which was critically dependent upon their expression of interleukin 10.

Conclusions

The results of this study attribute a novel anti-inflammatory role to a unique subset of infiltrating monocyte-derived MΦ in SCI recovery, which cannot be provided by the activated resident microglia. According to our results, limited recovery following SCI can be attributed in part to the inadequate, untimely, spontaneous recruitment of monocytes. This process is amenable to boosting either by active vaccination with a myelin-derived altered peptide ligand, which indicates involvement of adaptive immunity in monocyte recruitment, or by augmenting the naïve monocyte pool in the peripheral blood. Thus, our study sheds new light on the long-held debate regarding the contribution of MΦ to recovery from CNS injuries, and has potentially far-reaching therapeutic implications. Please see later in the article for Editors'' Summary  相似文献   

17.
Microglia rapidly mount an inflammatory response to pathogens in the central nervous system (CNS). Heparan sulfate proteoglycans (HSPGs) have been attributed various roles in inflammation. To elucidate the relevance of microglial HSPGs in a pro-inflammatory response we isolated microglia from mice overexpressing heparanase (Hpa-tg), the HS-degrading endoglucuronidase, and challenged them with lipopolysaccharide (LPS), a bacterial endotoxin. Prior to LPS-stimulation, the LPS-receptor cluster-of-differentiation 14 (CD14) and Toll-like receptor 4 (TLR4; essential for the LPS response) were similarly expressed in Ctrl and Hpa-tg microglia. However, compared with Ctrl microglia, Hpa-tg cells released significantly less tumor necrosis factor-α (TNFα), essentially failed to up-regulate interleukin-1β (IL1β) and did not initiate synthesis of proCD14. Isolated primary astroyctes expressed TLR4, but notably lacked CD14 and in contrast to microglia, LPS challenge induced a similar TNFα response in Ctrl and Hpa-tg astrocytes, while neither released IL1β. The astrocyte TNFα-induction was thus attributed to CD14-independent TLR4 activation and was unaffected by the cells HS status. Equally, the suppressed LPS-response in Hpa-tg microglia indicated a loss of CD14-dependent TLR4 activation, suggesting that microglial HSPGs facilitate this process. Indeed, confocal microscopy confirmed interactions between microglial HS and CD14 in LPS-stimulated microglia and a potential HS-binding motif in CD14 was identified. We conclude that microglial HSPGs facilitate CD14-dependent TLR4 activation and that heparanase can modulate this mechanism.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号