首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Poly(A)-binding proteins (PABPs) are the best characterized messenger RNA-binding proteins of eucaryotic cells and have been identified in diverse organisms such as mammals and yeasts. The in vitro poly(A)-binding properties of these proteins have been studied intensively; however, little is known about their function in cells. In this report, we show that sea urchin eggs have two molecular weight forms of PABP (molecular weights of 66,000 and 80,000). Each of these has at least five posttranslationally modified forms. Both sea urchin PABPs are found in approximately 1:1 ratios in both cytoplasmic and nuclear fractions of embryonic cells. Quantification in eggs and embryos revealed that sea urchin PABPs are surprisingly abundant, composing about 0.6% of total cellular protein. This is 50 times more than required to bind all the poly(A) in the egg based on the binding stoichiometry of 1 PABP per 27 adenosine residues. We found that density gradient centrifugation strips PABP from poly(A) and therefore underestimates the amount of PABP complexed to poly(A)+ RNA in cell homogenates. However, large-pore gel filtration chromatography could be used to separate intact poly(A)-PABP complexes from free PABP. Using the gel filtration method, we found that the threefold increase in poly(A) content of the egg after fertilization is paralleled by an approximate fivefold increase in the amount of bound PABP. Furthermore, both translated and nontranslated poly(A)+ RNAs appear to be complexed to PABP. As expected from the observation that PABPs are so abundant, greater than 95% of the PABP of the cell is uncomplexed protein.  相似文献   

9.
10.
Poly (A) binding proteins are intimately implicated in controlling a number of events in mRNA metabolism from nuclear polyadenylation to cytoplasmic translation and stability. The known poly(A) binding proteins can be divided into three distinct structural groups (prototypes PABP1, PABPN1/PABP2 and Nab2p) and two functional families, showing that similar functions can be accomplished by differing structural units. This has prompted us to perform a screen for novel poly(A) binding proteins using Xenopus laevis. A novel poly(A) binding protein of 32 kDa (p32) was identified. Sequence analysis showed that p32 has about 50% identity to the known nuclear poly(A) binding proteins (PABPN1) but is more closely related to a group of mammalian proteins of unknown function. The expression of Xenopus laevis ePABP2 is restricted to early embryos. Accordingly, we propose that p32 is the founder member of a novel class of poly(A) binding proteins named ePABP2.  相似文献   

11.
12.
Poly (A) tails are found at the 3' ends of almost all eukaryotic mRNAs. They are bound by two different poly (A) binding proteins, PABPC in the cytoplasm and PABPN1 in the nucleus. PABPC functions in the initiation of translation and in the regulation of mRNA decay. In both functions, an interaction with the m7G cap at the 5' end of the message plays an important role. PABPN1 is involved in the synthesis of poly (A) tails, increasing the processivity of poly (A) polymerase and contributing to defining the length of a newly synthesized poly (A) tail.  相似文献   

13.
14.
The ubiquitous and abundant cytoplasmic poly(A) binding protein (PABP) is a highly conserved multifunctional protein, many copies of which bind to the poly(A) tail of eukaryotic mRNAs to promote translation initiation. The N-terminus of PABP is responsible for the high binding specificity and affinity to poly(A), whereas the C-terminus is known to stimulate PABP multimerization on poly(A). Here, we use single-molecule nanopore force spectroscopy to directly measure interactions between poly(A) and PABPs. Both electrical and biochemical results show that the C-C domain interaction between two consecutive PABPs promotes cooperative binding. Up to now, investigators have not been able to probe the detailed polarity configuration (i.e., the internal arrangement of two PABPs on a poly(A) streak in which the C-termini face toward or away from each other). Our nanopore force spectroscopy system is able to distinguish the cooperative binding conformation from the noncooperative one. The ~50% cooperative binding conformation of wild-type PABPs indicates that the C-C domain interaction doubles the cooperative binding probability. Moreover, the longer dissociation time of a cooperatively bound poly(A)/PABP complex as compared with a noncooperatively bound one indicates that the cooperative mode is the most stable conformation for PABPs binding onto the poly(A). However, ~50% of the poly(A)/PABP complexes exhibit a noncooperative binding conformation, which is in line with previous studies showing that the PABP C-terminal domain also interacts with additional protein cofactors.  相似文献   

15.
16.
RNA-binding proteins are of vital importance for mRNA functioning. Among these, poly(A)-binding proteins (PABPs) are of special interest due to their participation in virtually all mRNA-dependent events that is caused by their high affinity for A-rich mRNA sequences. Apart from mRNAs, PABPs interact with many proteins, thus promoting their involvement in cellular events. In the nucleus, PABPs play a role in polyadenylation, determine the length of the poly(A) tail, and may be involved in mRNA export. In the cytoplasm, they participate in regulation of translation initiation and either protect mRNAs from decay through binding to their poly(A) tails or stimulate this decay by promoting mRNA inter-actions with deadenylase complex proteins. This review presents modern notions of the role of PABPs in mRNA-dependent events; peculiarities of regulation of PABP amount in the cell and activities are also discussed.  相似文献   

17.
Vasopressin (VP) mRNA and the non-coding BC200 RNA are sorted to neuronal dendrites. Among proteins interacting specifically with both RNAs is the multifunctional poly(A)-binding protein (PABP) consisting of four RNA recognition motifs (RRMs) and a C-terminal auxiliary domain. The protein/RNA interaction studies presented here reveal that PABPs association with VP- and BC200 RNA is exclusively mediated by RRMs 3+4. Quantitative binding studies with PABP deletion mutants demonstrate preferential binding of RRMs 3+4 even to poly(A)-homopolymers, while RRMs 1+2 exhibit a lower affinity for those sequences. An optimal interaction with both poly(A)- and non-poly(A) sequences is only achieved by full-size PABP.  相似文献   

18.
19.
Nuclear poly(A)‐binding proteins (PABPs) are evolutionarily conserved proteins that play key roles in eukaryotic gene expression. In the fission yeast Schizosaccharomyces pombe, the major nuclear PABP, Pab2, functions in the maturation of small nucleolar RNAs as well as in nuclear RNA decay. Despite knowledge about its nuclear functions, nothing is known about how Pab2 is imported into the nucleus. Here, we show that Pab2 contains a proline‐tyrosine nuclear localization signal (PY‐NLS) that is necessary and sufficient for its nuclear localization and function. Consistent with the role of karyopherin β2 (Kapβ2)‐type receptors in the import of PY‐NLS cargoes, we show that the fission yeast ortholog of human Kapβ2, Kap104, binds to recombinant Pab2 and is required for Pab2 nuclear localization. The absence of arginine methylation in a basic region N‐terminal to the PY‐core motif of Pab2 did not affect its nuclear localization. However, in the context of a sub‐optimal PY‐NLS, we found that Pab2 was more efficiently targeted to the nucleus in the absence of arginine methylation, suggesting that this modification can affect the import kinetics of a PY‐NLS cargo. Although a sequence resembling a PY‐NLS motif can be found in the human Pab2 ortholog, PABPN1, our results indicate that neither a functional PY‐NLS nor Kapβ2 activity are required to promote entry of PABPN1 into the nucleus of human cells. Our findings describe the mechanism by which Pab2 is imported into the nucleus, providing the first example of a PY‐NLS import system in fission yeast. In addition, this study suggests the existence of alternative or redundant nuclear import pathways for human PABPN1.  相似文献   

20.
Two structurally different poly(A)-binding proteins (PABP) bind the poly(A) tract of mRNAs in most mammalian cells: PABPC in the cytoplasm and PABP2/PABPN1 in the nucleus. Whereas yeast orthologs of the cytoplasmic PABP are characterized, a gene product homologous to mammalian PABP2 has not been identified in yeast. We report here the identification of a homolog of PABP2 as an arginine methyltransferase 1 (RMT1)-associated protein in fission yeast. The product of the Schizosaccharomyces pombe pab2 gene encodes a nonessential nuclear protein and demonstrates specific poly(A) binding in vitro. Consistent with a functional role in poly(A) tail metabolism, mRNAs from pab2-null cells displayed hyperadenylated 3'-ends. We also show that arginine residues within the C-terminal arginine-rich domain of Pab2 are modified by RMT1-dependent methylation. Whereas the arginine methylated and unmethylated forms of Pab2 behaved similarly in terms of subcellular localization, poly(A) binding, and poly(A) tail length control; Pab2 oligomerization levels were markedly increased when Pab2 was not methylated. Significantly, Pab2 overexpression reduced growth rate, and this growth inhibitory effect was exacerbated in rmt1-null cells. Our results indicate that the main cellular function of Pab2 is in poly(A) tail length control and support a biological role for arginine methylation in the regulation of Pab2 oligomerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号