共查询到20条相似文献,搜索用时 0 毫秒
1.
Poly (A) tails are found at the 3' ends of almost all eukaryotic mRNAs. They are bound by two different poly (A) binding proteins, PABPC in the cytoplasm and PABPN1 in the nucleus. PABPC functions in the initiation of translation and in the regulation of mRNA decay. In both functions, an interaction with the m7G cap at the 5' end of the message plays an important role. PABPN1 is involved in the synthesis of poly (A) tails, increasing the processivity of poly (A) polymerase and contributing to defining the length of a newly synthesized poly (A) tail. 相似文献
2.
We describe a new RNA binding protein from Xenopus we have named ePABP2 (embryonic poly(A) binding protein type II). Based on amino acid similarity, ePABP2 is closely related to the ubiquitously expressed nuclear PABP2 protein that directs the elongation of mRNA poly(A) tails during pre-mRNA processing. However, in contrast to known PABP2 proteins, Xenopus ePABP2 is a cytoplasmic protein that is predominantly expressed during the early stages of Xenopus development and in adult ovarian tissue. Biochemical experiments indicate ePABP2 binds poly(A) with specificity and that this binding requires the RRM domain. Mouse and human ePABP2 proteins were also identified and mouse ePABP2 expression is also confined to the earliest stages of mouse development and adult ovarian tissue. We propose that Xenopus ePABP2 is the founding member of a new class of poly(A) binding proteins expressed in vertebrate embryos. Possible roles for this protein in regulating mRNA function in early vertebrate development are discussed. 相似文献
3.
Background
Cytoplasmic polyadenylation element binding proteins (CPEBs) regulate translation by binding to regulatory motifs of defined mRNA targets. This translational mechanism has been shown to play a critical role in oocyte maturation, early development, and memory formation in the hippocampus. Little is known about the presence or functions of CPEBs in the retina. The purpose of the current study is to investigate the alternative splicing isoforms of a particular CPEB, CPEB3, based on current databases, and to characterize the expression of CPEB3 in the retina. 相似文献4.
Schmid M Poulsen MB Olszewski P Pelechano V Saguez C Gupta I Steinmetz LM Moore C Jensen TH 《Molecular cell》2012,47(2):267-280
Poly(A) (pA) tail binding proteins (PABPs) control mRNA polyadenylation, stability, and translation. In a purified system, S. cerevisiae PABPs, Pab1p and Nab2p, are individually sufficient to provide normal pA tail length. However, it is unknown how this occurs in more complex environments. Here we find that the nuclear exosome subunit Rrp6p counteracts the in vitro and in vivo extension of mature pA tails by the noncanonical pA polymerase Trf4p. Moreover, PABP loading onto nascent pA tails is controlled by Rrp6p; while Pab1p is the major PABP, Nab2p only associates in the absence of Rrp6p. This is because Rrp6p can interact with Nab2p and displace it from pA tails, potentially leading to RNA turnover, as evidenced for certain pre-mRNAs. We suggest that a nuclear mRNP surveillance step involves targeting of Rrp6p by Nab2p-bound pA-tailed RNPs and that pre-mRNA abundance is regulated at this level. 相似文献
5.
6.
Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes 总被引:2,自引:0,他引:2 下载免费PDF全文
Gagné JP Isabelle M Lo KS Bourassa S Hendzel MJ Dawson VL Dawson TM Poirier GG 《Nucleic acids research》2008,36(22):6959-6976
Poly(ADP-ribose) (pADPr) is a polymer assembled from the enzymatic polymerization of the ADP-ribosyl moiety of NAD by poly(ADP-ribose) polymerases (PARPs). The dynamic turnover of pADPr within the cell is essential for a number of cellular processes including progression through the cell cycle, DNA repair and the maintenance of genomic integrity, and apoptosis. In spite of the considerable advances in the knowledge of the physiological conditions modulated by poly(ADP-ribosyl)ation reactions, and notwithstanding the fact that pADPr can play a role of mediator in a wide spectrum of biological processes, few pADPr binding proteins have been identified so far. In this study, refined in silico prediction of pADPr binding proteins and large-scale mass spectrometry-based proteome analysis of pADPr binding proteins were used to establish a comprehensive repertoire of pADPr-associated proteins. Visualization and modeling of these pADPr-associated proteins in networks not only reflect the widespread involvement of poly(ADP-ribosyl)ation in several pathways but also identify protein targets that could shed new light on the regulatory functions of pADPr in normal physiological conditions as well as after exposure to genotoxic stimuli. 相似文献
7.
8.
9.
Recent studies have found the cytoplasmic poly(A) binding protein (PABPC) to have opposing effects on gene expression when concentrated in the cytoplasm versus in the nucleus. PABPC is predominantly cytoplasmic at steady state, where it enhances protein synthesis through simultaneous interactions with mRNA and translation factors. However, it accumulates dramatically within the nucleus in response to various pathogenic and nonpathogenic stresses, leading to an inhibition of mRNA export. The molecular events that trigger relocalization of PABPC and the mechanisms by which it translocates into the nucleus to block gene expression are not understood. Here, we reveal an RNA-based mechanism of retaining PABPC in the cytoplasm. Expression either of viral proteins that promote mRNA turnover or of a cytoplasmic deadenylase drives nuclear relocalization of PABPC in a manner dependent on the PABPC RNA recognition motifs (RRMs). Using multiple independent binding sites within its RRMs, PABPC interacts with importin α, a component of the classical import pathway. Finally, we demonstrate that the direct association of PABPC with importin α is antagonized by the presence of poly(A) RNA, supporting a model in which RNA binding masks nuclear import signals within the PABPC RRMs, thereby ensuring efficient cytoplasmic retention of this protein in normal cells. These findings further suggest that cells must carefully calibrate the ratio of PABPC to mRNA, as events that offset this balance can dramatically influence gene expression. 相似文献
10.
Irrespective of their effects on ongoing host protein synthesis, productive replication of the representative alphaherpesvirus herpes simplex virus type 1, the representative gammaherpesvirus Kaposi's sarcoma herpesvirus, and the representative betaherpesvirus human cytomegalovirus [HCMV] stimulates the assembly of the multisubunit, cap-binding translation factor eIF4F. However, only HCMV replication is associated with an increased abundance of eIF4F core components (eIF4E, eIF4G, eIF4A) and the eIF4F-associated factor poly(A) binding protein (PABP). Here, we demonstrate that the increase in translation factor concentration was readily detected in an asynchronous population of HCMV-infected primary human fibroblasts, abolished by prior UV inactivation of virus, and genetically dependent upon viral immediate-early genes. Strikingly, while increased mRNA steady-state levels accompanied the rise in eIF4E and eIF4G protein levels, the overall abundance of PABP mRNA, together with the half-life of the polypeptide it encodes, remained relatively unchanged by HCMV infection. Instead, HCMV-induced PABP accumulation resulted from new protein synthesis and was sensitive to the mTORC1-selective inhibitor rapamycin, which interferes with phosphorylation of the mTORC1 substrate p70 S6K and the translational repressor 4E-BP1. While virus-induced PABP accumulation did not require p70 S6K, it was inhibited by the expression of a dominant-acting 4E-BP1 variant unable to be inactivated by mTORC1. Finally, unlike the situation in alpha- or gammaherpesvirus-infected cells, where PABP is redistributed to nuclei, PABP accumulated in the cytoplasm of HCMV-infected cells. Thus, cytoplasmic PABP accumulation is translationally controlled in HCMV-infected cells via a mechanism requiring mTORC1-mediated inhibition of the cellular 4E-BP1 translational repressor. 相似文献
11.
Autoregulation of GLD-2 cytoplasmic poly(A) polymerase 总被引:1,自引:0,他引:1
Cytoplasmic polyadenylation regulates mRNA stability and translation and is required for early development and synaptic plasticity. The GLD-2 poly(A) polymerase catalyzes cytoplasmic polyadenylation in the germline of metazoa. Among vertebrates, the enzyme is encoded by two isoforms of mRNA that differ only in the length of their 3'-UTRs. Here we focus on regulation of vertebrate GLD-2 mRNA. We show that the 3'-UTR of GLD-2 mRNA elicits its own polyadenylation and translational activation during frog oocyte maturation. We identify the sequence elements responsible for repression and activation, and demonstrate that CPEB and PUF proteins likely mediate repression in the resting oocyte. Regulated polyadenylation of GLD-2 mRNA is conserved, as are the key regulatory elements. Poly(A) tails of GLD-2 mRNA increase in length in the brain in response to neuronal stimulation, suggesting that a comparable system exists in that tissue. We propose a positive feedback circuit in which translation of GLD-2 mRNA is stimulated by its polyadenylation, thereby reinforcing the switch to polyadenylate and activate batteries of mRNAs. 相似文献
12.
13.
14.
Identification of a human cytoplasmic poly(A) nuclease complex stimulated by poly(A)-binding protein
The poly(A) tail shortening in mRNA, called deadenylation, is the first rate-limiting step in eukaryotic mRNA turnover, and the polyadenylate-binding protein (PABP) appears to be involved in the regulation of this step. However, the precise role of PABP remains largely unknown in higher eukaryotes. Here we identified and characterized a human PABP-dependent poly(A) nuclease (hPAN) complex consisting of catalytic hPan2 and regulatory hPan3 subunits. hPan2 has intrinsically a 3' to 5' exoribonuclease activity and requires Mg2+ for the enzyme activity. On the other hand, hPan3 interacts with PABP to simulate hPan2 nuclease activity. Interestingly, the hPAN nuclease complex has a higher substrate specificity to poly(A) RNA upon its association with PABP. Consistent with the roles of hPan2 and hPan3 in mRNA decay, the two subunits exhibit cytoplasmic co-localization. Thus, the human PAN complex is a poly(A)-specific exoribonuclease that is stimulated by PABP in the cytoplasm. 相似文献
15.
Two distinct poly(A) polymerases in yeast nuclei 总被引:3,自引:0,他引:3
β-Hydroxy-β-methylglutaryl coenzyme A reductase activity in rat liver increased 2 to 7-fold after subcutaneous administration of insulin into normal or diabetic animals. Reductase activity began increasing after one hour, rose to a maximum in two to three hours, and then declined to the control level after six hours. This response was elicited during the time of day when the normal diurnal variation in reductase activity approached a minimum. It was also elicited when animals did not have access to food. This stimulation of reductase activity was completely blocked when glucagon was administered in conjunction with insulin. The increase in reductase activity after insulin administration was accompanied by a proportionate increase in activity for the conversion of acetate to cholesterol. 相似文献
16.
17.
We examined the ligand protein interactions of two highly homologous cellular retinol binding proteins, CRBP and CRBP-II, and two highly homologous cellular retinoic acid binding proteins, CRABP-I and CRABP-II. While the crystal structures of all four have been determined, nuclear magnetic resonance studies provide a means for observing dynamic aspects of ligand protein interactions of these proteins in solution. The cellular functions of these proteins are less well understood. We have modeled retinoid flux between cytoplasmic retinoid proteins and model membranes and with nuclear receptors. Based on our in vitro studies, we propose that certain retinoids may indirectly influence retinoid signaling by displacing endogenous retinoids from the cytoplasmic proteins to the nuclear receptors. 相似文献
18.
Benoit B Mitou G Chartier A Temme C Zaessinger S Wahle E Busseau I Simonelig M 《Developmental cell》2005,9(4):511-522
Translational control of maternal mRNA through regulation of poly(A) tail length is crucial during early development. The nuclear poly(A) binding protein, PABP2, was identified biochemically from its role in nuclear polyadenylation. Here, we analyze the in vivo function of PABP2 in Drosophila. PABP2 is required in vivo for polyadenylation, and Pabp2 function, including poly(A) polymerase stimulation, is essential for viability. We also demonstrate an unanticipated cytoplasmic function for PABP2 during early development. In contrast to its role in nuclear polyadenylation, cytoplasmic PABP2 acts to shorten the poly(A) tails of specific mRNAs. PABP2, together with the deadenylase CCR4, regulates the poly(A) tails of oskar and cyclin B mRNAs, both of which are also controlled by cytoplasmic polyadenylation. Both Cyclin B protein levels and embryonic development depend upon this regulation. These results identify a regulator of maternal mRNA poly(A) tail length and highlight the importance of this mode of translational control. 相似文献
19.
Major transcripts containing B1 and B2 repetitive sequences in cytoplasmic poly(A)+RNA from mouse tissues 总被引:3,自引:0,他引:3
A P Ryskov P L Ivanov O N Tokarskaya D A Kramerov M S Grigoryan G P Georgiev 《FEBS letters》1985,182(1):73-76
The cytoplasmic poly(A)+RNAs containing ubiquitous B1 and B2 repeats of the mouse genome in normal tissues and tumors have been studied. Only one strand of the repeats is represented in cytoplasmic RNA in all the cases. Some tumor cells were found to be enriched in 1.4 kb B1+mRNA, 1.6 kb B2+mRNA and small (0.2-04 kb) B1+ and B2+ poly(A)+RNAs. On the other hand, mouse liver and kidney contained high amounts of 2 kb B2+mRNA. Its content increased noticeably in the regenerating liver, but in hepatoma it dropped to a zero level. Thus, the switching on (or off) of B1- and B2-containing mRNAs occurred noncoordinately. At the same time, the activation of the synthesis of small B2+RNA and small B1+RNA was simultaneous. 相似文献
20.
Poly(N-isopropylacrylamide) (PNIPA) microgels may offer several advantages over PNIPA-modified surfaces when used as sorbents in temperature-sensitive chromatography. Yet, a full exploitation of these advantages requires a better understanding of the mechanisms controlling the separation process. As a model system, we have studied the binding of three proteins (bovine serum albumin (BSA), ovalbumin, and lysozyme) to PNIPA microgels. Binding experiments were conducted both below (25 degrees C) and above (37 degrees C) the volume phase transition temperature of the gel, T(c). The analysis of the binding isotherms has shown that although an average gel particle contained a larger amount of protein below the phase transition temperature, the concentration of the protein within the particle was higher above this temperature. These findings were attributed to changes in the binding loci due to temperature swings around T(c): whereas a sorption mechanism is dominant below this temperature, surface-adsorption was more important above it. A comparison between the three studied proteins has shown that below T(c) the binding increases with a decrease in the molecular weight. On the other hand, no significant difference in the bound protein amounts was observed above the phase transition temperature. Our results imply that, despite the increase in the gel's hydrophobicity above the phase transition temperature, the resolution in bioseparations based on PNIPA gels is not necessarily better above T(c). 相似文献