首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
RNA–protein interactions are the structural and functional basis of significant numbers of RNA molecules. RNA–protein interaction assays though, still mainly depend on biochemical tests in vitro. Here, we establish a convenient and reliable RNA fluorescent three-hybrid (rF3H) method to detect/interrogate the interactions between RNAs and proteins in cells. A GFP tagged highly specific RNA trap is constructed to anchor the RNA of interest to an artificial or natural subcellular structure, and RNA–protein interactions can be detected and visualized by the enrichment of RNA binding proteins (RBPs) at these structures. Different RNA trapping systems are developed and detection of RNA–protein complexes at multiple subcellular structures are assayed. With this new toolset, interactions between proteins and mRNA or noncoding RNAs are characterized, including the interaction between a long noncoding RNA and an epigenetic modulator. Our approach provides a flexible and reliable method for the characterization of RNA–protein interactions in living cells.  相似文献   

2.
Regulation of the structural equilibrium of G-quadruplex-forming sequences located in the promoter regions of oncogenes by the binding of small molecules has shown potential as a new avenue for cancer chemotherapy. In this study, microcalorimetry (isothermal titration calorimetry and differential scanning calorimetry), electronic spectroscopy (ultraviolet-visible and circular dichroism), and molecular modeling were used to probe the complex interactions between a cationic porphryin mesotetra (N-methyl-4-pyridyl) porphine (TMPyP4) and the c-MYC PU 27-mer quadruplex. The stoichiometry at saturation is 4:1 mol of TMPyP4/c-MYC PU 27-mer G-quadruplex as determined by isothermal titration calorimetry, circular dichroism, and ultraviolet-visible spectroscopy. The four independent TMPyP4 binding sites fall into one of two modes. The two binding modes are different with respect to affinity, enthalpy change, and entropy change for formation of the 1:1 and 2:1, or 3:1 and 4:1 complexes. Binding of TMPyP4, at or near physiologic ionic strength ([K(+)] = 0.13 M), is described by a "two-independent-sites model." The two highest-affinity sites exhibit a K(1) of 1.6 x 10(7) M(-1) and the two lowest-affinity sites exhibit a K(2) of 4.2 x 10(5) M(-1). Dissection of the free-energy change into the enthalpy- and entropy-change contributions for the two modes is consistent with both "intercalative" and "exterior" binding mechanisms. An additional complexity is that there may be as many as six possible conformational quadruplex isomers based on the sequence. Differential scanning calorimetry experiments demonstrated two distinct melting events (T(m)1 = 74.7 degrees C and T(m)2 = 91.2 degrees C) resulting from a mixture of at least two conformers for the c-MYC PU 27-mer in solution.  相似文献   

3.
4.
DNA can assume various structures as a result of interactions at atomic and molecular levels (e.g., hydrogen bonds, π–π stacking interactions, and electrostatic potentials), so understanding of the consequences of these interactions could guide development of ways to produce elaborate programmable DNA for applications in bio- and nanotechnology. We conducted advanced ab initio calculations to investigate nucleobase model structures by componentizing their donor-acceptor interactions. By unifying computational conditions, we compared the independent interactions of DNA duplexes, triplexes, and quadruplexes, which led us to evaluate a stability trend among Watson–Crick and Hoogsteen base pairing, stacking, and even ion binding. For a realistic solution-like environment, the influence of water molecules was carefully considered, and the potassium-ion preference of G-quadruplex was first analyzed at an ab initio level by considering both base-base and ion-water interactions. We devised new structure factors including hydrogen bond length, glycosidic vector angle, and twist angle, which were highly effective for comparison between computationally-predicted and experimentally-determined structures; we clarified the function of phosphate backbone during nucleobase ordering. The simulated tendency of net interaction energies agreed well with that of real world, and this agreement validates the potential of ab initio study to guide programming of complicated DNA constructs.  相似文献   

5.
Bacteriophages, the viruses infecting bacteria, hold great potential for the treatment of multidrug-resistant bacterial infections and other applications due to their unparalleled diversity and recent breakthroughs in their genetic engineering. However, fundamental knowledge of the molecular mechanisms underlying phage–host interactions is mostly confined to a few traditional model systems and did not keep pace with the recent massive expansion of the field. The true potential of molecular biology encoded by these viruses has therefore remained largely untapped, and phages for therapy or other applications are often still selected empirically. We therefore sought to promote a systematic exploration of phage–host interactions by composing a well-assorted library of 68 newly isolated phages infecting the model organism Escherichia coli that we share with the community as the BASEL (BActeriophage SElection for your Laboratory) collection. This collection is largely representative of natural E. coli phage diversity and was intensively characterized phenotypically and genomically alongside 10 well-studied traditional model phages. We experimentally determined essential host receptors of all phages, quantified their sensitivity to 11 defense systems across different layers of bacterial immunity, and matched these results to the phages’ host range across a panel of pathogenic enterobacterial strains. Clear patterns in the distribution of phage phenotypes and genomic features highlighted systematic differences in the potency of different immunity systems and suggested the molecular basis of receptor specificity in several phage groups. Our results also indicate strong trade-offs between fitness traits like broad host recognition and resistance to bacterial immunity that might drive the divergent adaptation of different phage groups to specific ecological niches. We envision that the BASEL collection will inspire future work exploring the biology of bacteriophages and their hosts by facilitating the discovery of underlying molecular mechanisms as the basis for an effective translation into biotechnology or therapeutic applications.

This study presents the BASEL collection of phages that infect the model bacterium Escherichia coli; this resource for the community is representative of natural E. coli phage diversity and has been extensively characterized phenotypically and genomically.  相似文献   

6.
M P Kladde  M Xu    R T Simpson 《The EMBO journal》1996,15(22):6290-6300
Current methods for analysis of chromatin architecture are invasive, utilizing chemicals or nucleases that damage DNA, making detection of labile constituents and conclusions about true in vivo structure problematic. We describe a sensitive assay of chromatin structure which is performed in intact, living yeast. The approach utilizes expression of SssI DNA methyltransferase (MTase) in Saccharomyces cerevisiae to provide an order-of-magnitude increase in resolution over previously introduced MTases. Combining this resolution increase with the novel application of a PCR-based, positive chemical display of modified cytosines provides a significant advance in the direct study of DNA-protein interactions in growing cells that enables quantitative footprinting. The validity and efficacy of the strategy are demonstrated in mini-chromosomes, where positioned nucleosomes and a labile, operator-bound repressor are detected. Also, using a heterologous system to study gene activation, we show that in vivo hormone occupancy of the estrogen receptor is required for maximal site-specific DNA binding, whereas, at very high receptor-expression levels, hormone-independent partial occupancy of an estrogen-responsive element was observed. Receptor binding to a palindromic estrogen-responsive element leads to a footprint with strand-specific asymmetry, which is explicable by known structural information.  相似文献   

7.
8.
The large intron of the kappa immunoglobulin gene contains a cis-acting enhancer element, which is important in the tissue-specific expression of the gene. We have confirmed the binding activity of a sequence-specific factor present in lymphoid extracts derived from cell lines expressing, or induced to express, the kappa gene. We have extended these studies to show the binding activity is present in normal activated splenic B cells as well as lambda producing cells, and have demonstrated by DNAse footprint analysis full protection of a sequence containing the 11 bp homology to the SV-40 core enhancer. We have compared these in vitro binding studies with an analysis of protein-DNA interactions in intact murine cell lines using genomic sequencing techniques. We demonstrate significant alterations in DMS reactivity of DNA in the murine 70Z/3 cell line after it is induced to kappa expression. These alterations occur at guanine residues which are part of the the 11 bp core sequence, and are identical to those observed in cells constitutively expressing kappa. This provides direct evidence for the induced binding of the tissue specific factor to intact chromatin. In intact chromatin we also observed significant alteration in the reactivity of a guanine, 3' of the core sequence, which is part of a potential secondary DNA structure, and protection of four residues that are part of a region homologous to the heavy chain enhancer.  相似文献   

9.
Overall DNA-protein interactions in animal cells undergo drastic changes coupled with cellular transitions from quiescence to growth and reversely as revealed by nucleoprotein-Celite chromatography. DNA of chromatin was found to exist in one of the two sharply distinct alternative forms, namely, either tightly or weakly bound to protein moiety. These forms are specific for cycling and quiescent cells, respectively. The tight DNA-protein interactions characterize all cycling cells independent of the cell cycle phase. Transition of DNA of cycling cells from one form to another was observed as a result of treatment of isolated nuclei with DNase I.  相似文献   

10.
Eukaryotic cells respond to DNA damage within the S phase by activating an intra-S checkpoint: a response that includes reducing the rate of DNA synthesis. In yeast cells this can occur via checkpoint-dependent inhibition of origin firing and stabilization of ongoing forks, together with a checkpoint-independent slowing of fork movement. In higher eukaryotes, however, the mechanism by which DNA synthesis is reduced is less clear. We have developed strategies based on DNA fiber labeling that allow the quantitative assessment of rates of replication fork movement, origin firing, and fork stalling throughout the genome by examining large numbers of individually labeled replication forks. We show that exposing S phase cells to ionizing radiation induces a transient block to origin firing but does not affect fork rate or fork stalling. Alkylation damage by methyl methane sulfonate causes a slowing of fork movement and a high rate of fork stalling, in addition to inducing a block to new origin firing. Nucleotide depletion by hydroxyurea also reduces replication fork rate and increases stalling; moreover, in contrast to a recent report, we show that hydroxyurea induces a strong block to new origin firing. The DNA fiber labeling strategy provides a powerful new approach to analyze the dynamics of DNA replication in a perturbed S phase.  相似文献   

11.
It has been demonstrated by nucleoproteid-celite chromatography that 1-nitroso-1-methylurea, potassium cyanate and prospidin reduce DNA-protein interactions in chromatin of cell cultures from LL mice with lymphoblastic leukemia.  相似文献   

12.
The tumor-suppressing role of miR-455-3p has been reported in lung cancer, but the working mechanism remains to be fully elucidated. This study aims to explore the possible mechanism of miR-455-3p in regulating epithelial–mesenchymal transition (EMT) progression and angiogenesis in non-small cell lung cancer (NSCLC) cells.The expressions of miR-455-3p, HSF1, GLS1, and EMT-related proteins (E-cadherin, N-cadherin, vimentin, and Snail-1) in both NSCLC tissues and cell lines were determined by RT-qPCR and western blot. After cell transfection, cell proliferation and angiogenesis ability on NSCLC cells were assessed by MTT and tube formation assay. The binding of miR-455-3p with HSF1 was measured by luciferase reporter gene assay, while the interaction between HSF1 and GLS1 was determined by co-immunoprecipitation assay (Co-IP).HSF1 was highly expressed in NSCLC tissues and cells. Inhibition of HSF1 expression or overexpression of miR-455-3p in NSCLC cells can suppress cell proliferation, angiogenesis ability, and EMT progression. miR-455-3p was found to negatively regulate HSF1 expression. Co-transfection of miR-455-3p overexpression and HSF1 inhibition in NSCLC cells showed that miR-455-3p can partially counteract the effect of HSF1 in NSCLC cells. HSF1 can interact with GLS1 and elevate the expression of GLS1. GLS1 can partially abolish the suppressive effect of miR-455-3p in NSCLC cells.miR-455-3p can bind HSF1 to suppress the GLS1 in NSCLC cells, therefore suppressing EMT progression and angiogenesis of NSCLC cells.  相似文献   

13.
14.
We propose a classification of amino acid residues based on the events of contact formation between particular residues and DNA nucleotides, i.e., using the most integral properties that characterize interactions organizing DNA-protein complexes. We apply the Voronoi-Delaunay tessellation to draw statistics of contacts and of contact areas for a set of 1937 DNA-protein complexes. Similarity of amino acid residues is defined upon comparison of corresponding rows and matrices of contacts and areas of contacts. Nine measures of distance have been used to estimate the closeness of rows. Residues have been grouped by three hierarchical and two nonhierarchical clustering methods. In a total tree built using nine metrics with three hierarchical methods, we show that clustering centers (pairs of amino acids) in the main groups are always constant while other relationships between objects vary. Major classes of up to six amino acids correspond to certain local structures of the polypeptide chain. These data can be taken into account when designing DNA-protein ligands.  相似文献   

15.
16.
Deer are regarded to be a keystone species as they play a crucial role in the way an ecosystem functions. Most deer–forest interaction studies apply a single scale — process of analyzing ecological interactions by only taking into account one dependent variable — to understand how deer browsing behavior shapes different forest components, but they overlook the fact that forests respond to multiple scales simultaneously. This research evaluates the effect of browsing by wild deer on temperate and boreal forests at different scales by synthesizing seminal papers, specifically (a) what are the effects of deer population density in forest regeneration? (b) What are the effects of deer when forests present diverging spatial characteristics? (c) What are the effects on vegetation at different temporal scales? and (d) What are the hierarchical effects of deer when considering other trophic levels? Additionally, a framework based on modern technology is proposed to answer the multiscale research questions previously identified. When analyzing deer–forest interactions at different scales, the strongest relationships occur at the extremes. For example: when deer assemblage occurs in low or high density and is composed of a mix of small and large species. As forests on poor soils remain restrained in size, isolated and chronically browsed. When forests harbor incomplete trophic levels, the effects spill over to lower trophic levels. To better understand the complexities in deer–forest interactions, researchers should combine technology‐based instruments like fixed sensors and drones with field‐tested methods such observational studies and experiments to tackle multiscale research questions.  相似文献   

17.
Ligand binding triggers clathrin-mediated and, at high ligand concentrations, clathrin-independent endocytosis of EGFR. Clathrin-mediated endocytosis (CME) of EGFR is also induced by stimuli activating p38 MAPK. Mechanisms of both ligand- and p38-induced endocytosis are not fully understood, and how these pathways intermingle when concurrently activated remains unknown. Here we dissect the mechanisms of p38-induced endocytosis using a pH-sensitive model of endogenous EGFR, which is extracellularly tagged with a fluorogen-activating protein, and propose a unifying model of the crosstalk between multiple EGFR endocytosis pathways. We found that a new locus of p38-dependent phosphorylation in EGFR is essential for the receptor dileucine motif interaction with the σ2 subunit of clathrin adaptor AP2 and concomitant receptor internalization. p38-dependent endocytosis of EGFR induced by cytokines was additive to CME induced by picomolar EGF concentrations but constrained to internalizing ligand-free EGFRs due to Grb2 recruitment by ligand-activated EGFRs. Nanomolar EGF concentrations rerouted EGFR from CME to clathrin-independent endocytosis, primarily by diminishing p38-dependent endocytosis.  相似文献   

18.
19.
20.
Saddic LA  Wirt S  Vogel H  Felsher DW  Sage J 《PloS one》2011,6(5):e19758
Inactivation of the RB tumor suppressor and activation of the MYC family of oncogenes are frequent events in a large spectrum of human cancers. Loss of RB function and MYC activation are thought to control both overlapping and distinct cellular processes during cell cycle progression. However, how these two major cancer genes functionally interact during tumorigenesis is still unclear. Here, we sought to test whether loss of RB function would affect cancer development in a mouse model of c-MYC-induced hepatocellular carcinoma (HCC), a deadly cancer type in which RB is frequently inactivated and c-MYC often activated. We found that RB inactivation has minimal effects on the cell cycle, cell death, and differentiation features of liver tumors driven by increased levels of c-MYC. However, combined loss of RB and activation of c-MYC led to an increase in polyploidy in mature hepatocytes before the development of tumors. There was a trend for decreased survival in double mutant animals compared to mice developing c-MYC-induced tumors. Thus, loss of RB function does not provide a proliferative advantage to c-MYC-expressing HCC cells but the RB and c-MYC pathways may cooperate to control the polyploidy of mature hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号