首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Changes in neuronal activity modify the structure of dendritic spines and alter the function and protein composition of synapses. Regulated degradation of postsynaptic density (PSD) proteins by the ubiquitin-proteasome system is believed to play an important role in activity-dependent synaptic remodeling. Stimulating neuronal activity in vitro and in vivo induces the ubiquitination and degradation of GKAP/SAPAP and Shank, major scaffold proteins of the PSD. However, the specific ubiquitin ligases that regulate postsynaptic protein composition have not been identified. Here we identify the RING finger-containing protein TRIM3 as a specific E3 ubiquitin ligase for the PSD scaffold GKAP/SAPAP1. Present in PSD fractions from rat brain, TRIM3 stimulates ubiquitination and proteasome-dependent degradation of GKAP, and induces the loss of GKAP and associated scaffold Shank1 from postsynaptic sites. Suppression of endogenous TRIM3 by RNA interference (RNAi) results in increased accumulation of GKAP and Shank1 at synapses, as well as enlargement of dendritic spine heads. RNAi of TRIM3 also prevented the loss of GKAP induced by synaptic activity. Thus, TRIM3 is a novel E3 ligase that mediates activity-dependent turnover of PSD scaffold proteins and is a negative regulator of dendritic spine morphology.  相似文献   

2.
Guanylate kinase-associated protein (GKAP)/SAP90/PSD-95-associated protein (SAPAP)/DLG-associated protein (DAP) is a protein of the postsynaptic density (PSD), and binds to the guanylate kinase domain of PSD-95/synapse-associated protein (SAP) 90 and synaptic scaffolding molecule. GKAP/SAPAP/DAP recruits PSD-95/SAP90 and its interacting protein, brain-enriched guanylate kinase-interacting protein, into the Triton X-100-insoluble fraction in transfected cells, suggesting that GKAP/SAPAP/DAP may link several PSD components to the Triton X-100-insoluble structures in the PSD. We have identified here a novel neuronal GKAP/SAPAP/DAP-binding protein and named it synamon. Synamon has seven ankyrin repeats at the NH(2) terminus followed by one src homology 3 domain and one PSD-95/Dlg-A/ZO-1 domain, and several proline-rich regions at the carboxyl terminus. Synamon interacts with the COOH-terminal region of GKAP/SAPAP/DAP via the middle region containing a PSD-95/Dlg-A/ZO-1 domain. Synamon was coimmunoprecipitated with SAPAP from rat crude synaptosomes and colocalized with SAPAP in primary cultured rat hippocampal neurons. Because synamon is composed of various protein-interacting modules, it may also interact with proteins other than GKAP/SAPAP/DAP to organize the architecture of the PSD.  相似文献   

3.
Postsynaptic density (PSD)-95/synapse-associated protein (SAP) 90 and synaptic scaffolding molecule (S-SCAM) are synaptic membrane-associated guanylate kinases. Both the proteins interact with SAP90/PSD-95-associated protein (SAPAP) (also called guanylate kinase-associated protein/Dlg-associated protein). SAPAP is a protein highly enriched in the PSD fraction and may link PSD-95/SAP90 and S-SCAM to Triton X-100-insoluble structures. We found here a novel SAPAP-interacting protein, which was specifically expressed in neural tissue and was present in the postsynaptic density fraction in brain. This protein had a sorbin homology domain in the N terminus, a zinc finger motif in the middle region, and three src homology (SH) 3 domains in the C terminus and was homologous to the ponsin/ArgBP2/vinexin family proteins. We named this protein nArgBP2 because it was the most homologous to ArgBP2. nArgBP2 is a neural member of a growing family of SH3-containing proteins. nArgBP2 bound to the proline-rich region of SAPAP via its third SH3 domain and was coimmunoprecipitated with SAPAP from the extract of rat brain. Furthermore, nArgBP2 was colocalized with SAPAP at synapses in cerebellum. nArgBP2 bound to not only SAPAP but also vinculin and l-afadin, known to bind to ponsin and vinexin. nArgBP2 may be implicated in the protein network around SAPAP in the PSD.  相似文献   

4.
Ca2+/calmodulin-dependent protein kinase II (CaMKII), the most abundant kinase at the postsynaptic density (PSD), is expected to be involved in activity-induced regulation of synaptic properties. CaMKII is activated when it binds calmodulin in the presence of Ca2+ and, once autophosphorylated on T-286/7, remains active in the absence of Ca2+ (autonomous form). In the present study we used a quantitative mass spectrometric strategy (iTRAQ) to identify sites on PSD components phosphorylated upon CaMKII activation. Phosphorylation in isolated PSDs was monitored under conditions where CaMKII is: (1) mostly inactive (basal state), (2) active in the presence of Ca2+, and (3) active in the absence of Ca2+. The quantification strategy was validated through confirmation of previously described autophosphorylation characteristics of CaMKII. The effectiveness of phosphorylation of major PSD components by the activated CaMKII in the presence and absence of Ca2+ varied. Most notably, autonomous activity in the absence of Ca2+ was more effective in the phosphorylation of three residues on SynGAP. Several PSD scaffold proteins were phosphorylated upon activation of CaMKII. The strategy adopted allowed the identification, for the first time, of CaMKII-regulated sites on SAPAPs and Shanks, including three conserved serine residues near the C-termini of SAPAP1, SAPAP2, and SAPAP3. Involvement of CaMKII in the phosphorylation of PSD scaffold proteins suggests a role in activity-induced structural re-organization of the PSD.  相似文献   

5.
Endocytosis of AMPA receptors and other postsynaptic cargo occurs at endocytic zones (EZs), stably positioned sites of clathrin adjacent to the postsynaptic density (PSD). The tight localization of postsynaptic endocytosis is thought to control spine composition and regulate synaptic transmission. However, the mechanisms that situate the EZ near the PSD and the role of spine endocytosis in synaptic transmission are unknown. Here, we report that a physical link between dynamin-3 and the postsynaptic adaptor Homer positions the EZ near the PSD. Disruption of dynamin-3 or its interaction with Homer uncouples the PSD from the EZ, resulting in synapses lacking postsynaptic clathrin. Loss of the EZ leads to a loss of synaptic AMPA receptors and reduced excitatory synaptic transmission that corresponds with impaired synaptic recycling. Thus, a physical link between the PSD and the EZ ensures localized endocytosis and recycling by recapturing and maintaining a proximate pool of cycling AMPA receptors.  相似文献   

6.
The postsynaptic density (PSD) consists of a lattice-like array of interacting proteins that organizes and stabilizes synaptic receptors, ion channels, structural proteins, and signaling molecules required for normal synaptic transmission and synaptic function. The scaffolding and hub protein postsynaptic density protein-95 (PSD-95) is a major element of central chemical synapses and interacts with glutamate receptors, cell adhesion molecules, and cytoskeletal elements. In fact, PSD-95 can regulate basal synaptic stability as well as the activity-dependent structural plasticity of the PSD and, therefore, of the excitatory chemical synapse. Several studies have shown that PSD-95 is highly enriched at excitatory synapses and have identified multiple protein structural domains and protein-protein interactions that mediate PSD-95 function and trafficking to the postsynaptic region. PSD-95 is also a target of several signaling pathways that induce posttranslational modifications, including palmitoylation, phosphorylation, ubiquitination, nitrosylation, and neddylation; these modifications determine the synaptic stability and function of PSD-95 and thus regulate the fates of individual dendritic spines in the nervous system. In the present work, we review the posttranslational modifications that regulate the synaptic localization of PSD-95 and describe their functional consequences. We also explore the signaling pathways that induce such changes.  相似文献   

7.
8.
SH3 and multiple ankyrin (ANK) repeat domain 3 (SHANK3) is a synaptic scaffolding protein enriched in the postsynaptic density of excitatory synapses. SHANK3 plays an important role in the formation and maturation of excitatory synapses. In the brain, SHANK3 directly or indirectly interacts with various synaptic molecules including N-methyl-D-aspartate receptor, the metabotropic glutamate receptor (mGluR), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. Previous studies have shown that Autism spectrum disorder is a result of mutations of the main SHANK3 isoforms, which may be due to deficit in excitatory synaptic transmission and plasticity. Recently, accumulating evidence has demonstrated that overexpression of SHANK3 could induce seizures in vivo. However, little is known about the role of SHANK3 in refractory temporal lobe epilepsy (TLE). Therefore, we investigated the expression pattern of SHANK3 in patients with intractable temporal lobe epilepsy and in pilocarpine-induced models of epilepsy. Immunofluorescence, immunohistochemistry, and western blot analysis were used to locate and determine the expression of SHANK3 in the temporal neocortex of patients with epilepsy, and in the hippocampus and temporal lobe cortex of rats in a pilocarpine-induced epilepsy model. Double-labeled immunofluorescence showed that SHANK3 was mainly expressed in neurons. Western blot analysis confirmed that SHANK3 expression was increased in the neocortex of TLE patients and rats. These results indicate that SHANK3 participates in the pathology of epilepsy.  相似文献   

9.
Glutamatergic synapse maturation is critically dependent upon activation of NMDA-type glutamate receptors (NMDARs); however, the contributions of NR3A subunit-containing NMDARs to this process have only begun to be considered. Here we characterized the expression of NR3A in the developing mouse forebrain and examined the consequences of NR3A deletion on excitatory synapse maturation. We found that NR3A is expressed in many subcellular compartments, and during early development, NR3A subunits are particularly concentrated in the postsynaptic density (PSD). NR3A levels dramatically decline with age and are no longer enriched at PSDs in juveniles and adults. Genetic deletion of NR3A accelerates glutamatergic synaptic transmission, as measured by AMPAR-mediated postsynaptic currents recorded in hippocampal CA1. Consistent with the functional observations, we observed that the deletion of NR3A accelerated the expression of the glutamate receptor subunits NR1, NR2A, and GluR1 in the PSD in postnatal day (P) 8 mice. These data support the idea that glutamate receptors concentrate at synapses earlier in NR3A-knockout (NR3A-KO) mice. The precocious maturation of both AMPAR function and glutamate receptor expression are transient in NR3A-KO mice, as AMPAR currents and glutamate receptor protein levels are similar in NR3A-KO and wildtype mice by P16, an age when endogenous NR3A levels are normally declining. Taken together, our data support a model whereby NR3A negatively regulates the developmental stabilization of glutamate receptors involved in excitatory neurotransmission, synaptogenesis, and spine growth.  相似文献   

10.
Recent advances in imaging technology have highlighted that scaffold proteins and receptors are arranged in subsynaptic nanodomains. The synaptic membrane-associated guanylate kinase (MAGUK) scaffold protein membrane protein palmitoylated 2 (MPP2) is a component of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor–associated protein complexes and also binds to the synaptic cell adhesion molecule SynCAM 1. Using superresolution imaging, we show that—like SynCAM 1—MPP2 is situated at the periphery of the postsynaptic density (PSD). In order to explore MPP2-associated protein complexes, we used a quantitative comparative proteomics approach and identified multiple γ-aminobutyric acid (GABA)A receptor subunits among novel synaptic MPP2 interactors. In line with a scaffold function for MPP2 in the assembly and/or modulation of intact GABAA receptors, manipulating MPP2 expression had effects on inhibitory synaptic transmission. We further show that GABAA receptors are found together with MPP2 in a subset of dendritic spines and thus highlight MPP2 as a scaffold that serves as an adaptor molecule, linking peripheral synaptic elements critical for inhibitory regulation to central structures at the PSD of glutamatergic synapses.

This study shows that the MAGUK scaffold protein MPP2 is located at the periphery of postsynaptic densities in excitatory neurons, where it interacts with GABA-A receptors, thereby serving as a functional adaptor that links excitatory and inhibitory components of synaptic transmission at glutamatergic synapses.  相似文献   

11.
Postsynaptic densities (PSD) are a network of proteins located on the internal surface of excitatory synapses just inside the postsynaptic membrane. Enzymes associated with the PSD are optimally positioned to respond to signals transduced across the postsynaptic membrane resulting from excitatory synaptic transmission or neurotransmitter release. We present evidence suggesting that type II cAMP-dependent protein kinase (PKA) is anchored to the PSD through interaction of its regulatory subunit (RII) with an A-Kinase Anchor Protein (AKAPs). A cDNA for the human RII-anchoring protein, AKAP 79, was isolated by screening an expression library with radiolabeled RII. This cDNA (2621 base pairs) encodes a protein of 427 amino acids with 76% identity to bovine brain AKAP 75 and 93% identity to a carboxyl-terminal RII-binding fragment of murine brain AKAP 150. A bacterially expressed 92-amino acid fragment, AKAP 79 (335-427) was able to bind RII alpha. Disruption of secondary structure by site-directed mutagenesis at selected residues within a putative acidic amphipathic helix located between residues 392 and 408 prevented RII binding. Immunological studies demonstrate that AKAP 79 is predominantly expressed in the cerebral cortex and is a component of fractions enriched for postsynaptic densities. AKAP antisera strongly cross-react with a 150-kDa protein in murine PSD believed to be AKAP 150. Co-localization of the type II PKA in purified PSD fractions was confirmed immunologically by detection of RII and enzymologically by measuring cAMP-stimulated phosphorylation of the heptapeptide substrate Kemptide. Approximately 30% of the PSD kinase activity was specifically inhibited by PKI 5-24 peptide, a highly specific inhibitor of PKA. We propose that AKAP 79 and AKAP 150 function to anchor the type II PKA to the PSD, presumably for a role in the regulation of postsynaptic events.  相似文献   

12.
The postsynaptic density (PSD) of central excitatory synapses plays a key role in postsynaptic signal transduction and contains a high concentration of glutamate receptors and associated scaffold and signaling proteins. We report here a comprehensive analysis of purified PSD fractions by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We identified 374 different proteins that copurified with the PSD structure and discovered thirteen phosphorylated sites from eight proteins. These proteins were classified into numerous functional groups, implying that the signaling pathways in the PSD are complex and diverse. Furthermore, using quantitative mass spectrometry, we measured the molar concentration and relative stoichiometries of a number of glutamate receptor subunits and scaffold proteins in the postsynaptic density. Thus this proteomic study reveals crucial information about molecular abundance as well as molecular diversity in the PSD, and provides a basis for further studies on the molecular mechanisms of synaptic function and plasticity.  相似文献   

13.
Diacylglycerol (DAG) is an important lipid signalling molecule that exerts an effect on various effector proteins including protein kinase C. A main mechanism for DAG removal is to convert it to phosphatidic acid (PA) by DAG kinases (DGKs). However, it is not well understood how DGKs are targeted to specific subcellular sites and tightly regulates DAG levels. The neuronal synapse is a prominent site of DAG production. Here, we show that DGKζ is targeted to excitatory synapses through its direct interaction with the postsynaptic PDZ scaffold PSD‐95. Overexpression of DGKζ in cultured neurons increases the number of dendritic spines, which receive the majority of excitatory synaptic inputs, in a manner requiring its catalytic activity and PSD‐95 binding. Conversely, DGKζ knockdown reduces spine density. Mice deficient in DGKζ expression show reduced spine density and excitatory synaptic transmission. Time‐lapse imaging indicates that DGKζ is required for spine maintenance but not formation. We propose that PSD‐95 targets DGKζ to synaptic DAG‐producing receptors to tightly couple synaptic DAG production to its conversion to PA for the maintenance of spine density.  相似文献   

14.
Numerous studies have shown that drugs of abuse induce changes in protein expression in the brain that are thought to play a role in synaptic plasticity. Drug-induced plasticity can be mediated by changes at the synapse and more specifically at the postsynaptic density (PSD), which receives and transduces synaptic information. To date, the majority of studies examining synaptic protein profiles have focused on identifying the synaptic proteome. Only a handful of studies have examined the changes in synaptic profile by drug administration. We applied a quantitative proteomics analysis technique with the cleavable ICAT reagent to quantitate relative changes in protein levels of the hippocampal PSD in response to morphine administration. We identified a total of 102 proteins in the mouse hippocampal PSD. The majority of these were signaling, trafficking, and cytoskeletal proteins involved in synaptic plasticity, learning, and memory. Among the proteins whose levels were found to be altered by morphine administration, clathrin levels were increased to the largest extent. Immunoblotting and electron microscopy studies showed that this increase was localized to the PSD. Morphine treatment was also found to lead to a local increase in two other components of the endocytic machinery, dynamin and AP-2, suggesting a critical involvement of the endocytic machinery in the modulatory effects of morphine. Because alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are thought to undergo clathrin-mediated endocytosis, we examined the effect of morphine administration on the association of the AMPA receptor subunit, GluR1, with clathrin. We found a substantial decrease in the levels of GluR1 associated with clathrin. Taken together, these results suggest that, by causing a redistribution of endocytic proteins at the synapse, morphine modulates synaptic plasticity at hippocampal glutamatergic synapses.  相似文献   

15.
Anchoring proteins cluster receptors and ion channels at postsynaptic membranes in the brain. They also act as scaffolds for intracellular signaling molecules including synGAP and NO synthase. Here we report a new function for intracellular anchoring proteins: the regulation of synaptic ion channel function. A neuronal G protein-gated inwardly rectifying K(+) channel, Kir3.2c, can not be activated either by M(2)-muscarinic receptor stimulation or by G(betagamma) overexpression. When coexpressed with SAP97, a member of the PSD/SAP anchoring protein family, the channel became sensitive to G protein stimulation. Although the C-terminus of Kir3. 2c bound to the second PDZ domain of SAP97, functional analyses revealed that the guanylate kinase (GK) domain of SAP97 is crucial for sensitization of the Kir3.2c channel to G protein stimulation. Furthermore, SAPAP1/GKAP, which binds specifically to the GK domain of membrane-associated guanylate kinases, prevented the SAP97-induced sensitization. The function of a synaptic ion channel can therefore be controlled by a network of various intracellular proteins.  相似文献   

16.
AIDA-1 is highly enriched in postsynaptic density (PSD) fractions and is considered a major component of the PSD complex. In the present study, immunogold electron microscopy was applied to determine localization as well as the activity-induced redistribution of AIDA-1 at the PSD using two antibodies that recognize two different epitopes. In cultured rat hippocampal neurons under basal conditions, immunogold label for AIDA-1 is mostly located within the dense core of the PSD, with a median distance of ~30 nm from the postsynaptic membrane. Under excitatory conditions, such as depolarization with high K+ (90 mM, 2 min) or application of NMDA (50 μM, 2 min), AIDA-1 label density at the PSD core is reduced to 40% of controls and the median distance of label from the postsynaptic membrane increases to ~55 nm. The effect of excitatory conditions on the postsynaptic distribution of AIDA-1 is reversed within 30 minutes after returning to control conditions. The reversible removal of AIDA-1 from the PSD core under excitatory conditions is similar to the redistribution of another abundant PSD protein, SynGAP. Both SynGAP-alpha1 and AIDA-1 are known to bind PSD-95. Activity-induced transient translocation of these abundant proteins from the PSD core could promote structural flexibility, vacate sites on PSD-95 for the insertion of other components and thus may create a window for synaptic modification.  相似文献   

17.
Calcium/calmodulin-dependent protein kinase II (CaMKII), a major component of the postsynaptic density (PSD) of excitatory synapses, plays a key role in the regulation of synaptic function in the mammalian brain. Although many postsynaptic substrates for CaMKII have been characterized in vitro, relatively little is known about their phosphorylation in vivo. By tagging synaptic proteins with a peptide substrate specific for CaMKII and expressing them in cultured neurons, we have visualized substrate phosphorylation by CaMKII at intact synapses. All substrates tested were strongly phosphorylated by CaMKII in HEK293 cells. However, activity-dependent phosphorylation of substrates at synapses was highly selective in that the glutamate receptor subunits NR2B and GluR1 were poorly phosphorylated whereas PSD-95 and Stargazin, proteins implicated in the scaffolding and trafficking of AMPA receptors, were robustly phosphorylated. Phosphatase activity limited phosphorylation of Stargazin but not NR2B and GluR1. These results suggest that the unique molecular architecture of the PSD results in highly selective substrate discrimination by CaMKII.  相似文献   

18.
Ko J  Kim S  Chung HS  Kim K  Han K  Kim H  Jun H  Kaang BK  Kim E 《Neuron》2006,50(2):233-245
Synaptic cell adhesion molecules (CAMs) are known to play key roles in various aspects of synaptic structures and functions, including early differentiation, maintenance, and plasticity. We herein report the identification of a family of cell adhesion-like molecules termed SALM that interacts with the abundant postsynaptic density (PSD) protein PSD-95. SALM2, a SALM isoform, distributes to excitatory, but not inhibitory, synaptic sites. Overexpression of SALM2 increases the number of excitatory synapses and dendritic spines. Mislocalized expression of SALM2 disrupts excitatory synapses and dendritic spines. Bead-induced direct aggregation of SALM2 results in coclustering of PSD-95 and other postsynaptic proteins, including GKAP and AMPA receptors. Knockdown of SALM2 by RNA interference reduces the number of excitatory synapses and dendritic spines and the frequency, but not amplitude, of miniature excitatory postsynaptic currents. These results suggest that SALM2 is an important regulator of the differentiation of excitatory synapses.  相似文献   

19.
Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP) was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1–2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.  相似文献   

20.
Located at neuronal terminals, the postsynaptic density (PSD) is a highly complex network of cytoskeletal scaffolding and signaling proteins responsible for the transduction and modulation of glutamatergic signaling between neurons. Using ion‐mobility enhanced data‐independent label‐free LC‐MS/MS, we established a reference proteome of crude synaptosomes, synaptic junctions, and PSD derived from mouse hippocampus including TOP3‐based absolute quantification values for identified proteins. The final dataset across all fractions comprised 49 491 peptides corresponding to 4558 protein groups. Of these, 2102 protein groups were identified in highly purified PSD in at least two biological replicates. Identified proteins play pivotal roles in neurological and synaptic processes providing a rich resource for studies on hippocampal PSD function as well as on the pathogenesis of neuropsychiatric disorders. All MS data have been deposited in the ProteomeXchange with identifier PXD000590 ( http://proteomecentral.proteomexchange.org/dataset/PXD000590 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号