首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
HIV-1 Gag drives a number of events during the genesis of virions and is the only viral protein required for the assembly of virus-like particles in vitro and in cells. Although a reasonable understanding of the processes that accompany the later stages of HIV-1 assembly has accrued, events that occur at the initiation of assembly are less well defined. In this regard, important uncertainties include where in the cell Gag first multimerizes and interacts with the viral RNA, and whether Gag-RNA interaction requires or induces Gag multimerization in a living cell. To address these questions, we developed assays in which protein crosslinking and RNA/protein co-immunoprecipitation were coupled with membrane flotation analyses in transfected or infected cells. We found that interaction between Gag and viral RNA occurred in the cytoplasm and was independent of the ability of Gag to localize to the plasma membrane. However, Gag:RNA binding was stabilized by the C-terminal domain (CTD) of capsid (CA), which participates in Gag-Gag interactions. We also found that Gag was present as monomers and low-order multimers (e.g. dimers) but did not form higher-order multimers in the cytoplasm. Rather, high-order multimers formed only at the plasma membrane and required the presence of a membrane-binding signal, but not a Gag domain (the CA-CTD) that is essential for complete particle assembly. Finally, sequential RNA-immunoprecipitation assays indicated that at least a fraction of Gag molecules can form multimers on viral genomes in the cytoplasm. Taken together, our results suggest that HIV-1 particle assembly is initiated by the interaction between Gag and viral RNA in the cytoplasm and that this initial Gag-RNA encounter involves Gag monomers or low order multimers. These interactions per se do not induce or require high-order Gag multimerization in the cytoplasm. Instead, membrane interactions are necessary for higher order Gag multimerization and subsequent particle assembly in cells.  相似文献   

2.
Human immunodeficiency virus (HIV) Gag drives virus particle assembly. The capsid (CA) domain is critical for Gag multimerization mediated by protein–protein interactions. The Gag protein interaction network defines critical aspects of the retroviral lifecycle at steps such as particle assembly and maturation. Previous studies have demonstrated that the immature particle morphology of HIV-2 is intriguingly distinct relative to that of HIV-1. Based upon this observation, we sought to determine the amino acid residues important for virus assembly that might help explain the differences between HIV-1 and HIV-2. To do this, we conducted site-directed mutagenesis of targeted locations in the HIV-2 CA domain of Gag and analyzed various aspects of virus particle assembly. A panel of 31 site-directed mutants of residues that reside at the HIV-2 CA inter-hexamer interface, intra-hexamer interface and CA inter-domain linker were created and analyzed for their effects on the efficiency of particle production, particle morphology, particle infectivity, Gag subcellular distribution and in vitro protein assembly. Seven conserved residues between HIV-1 and HIV-2 (L19, A41, I152, K153, K157, N194, D196) and two non-conserved residues (G38, N127) were found to significantly impact Gag multimerization and particle assembly. Taken together, these observations complement structural analyses of immature HIV-2 particle morphology and Gag lattice organization as well as provide important comparative insights into the key amino acid residues that can help explain the observed differences between HIV immature particle morphology and its association with virus replication and particle infectivity.  相似文献   

3.
In HIV, the polyprotein precursor Gag orchestrates the formation of the viral capsid. In the current view of this viral assembly, Gag forms low-order oligomers that bind to the viral genomic RNA triggering the formation of high-ordered ribonucleoprotein complexes. However, this assembly model was established using biochemical or imaging methods that do not describe the cellular location hosting Gag–gRNA complex nor distinguish gRNA packaging in single particles. Here, we studied the intracellular localization of these complexes by electron microscopy and monitored the distances between the two partners by morphometric analysis of gold beads specifically labeling Gag and gRNA. We found that formation of these viral clusters occurred shortly after the nuclear export of the gRNA. During their transport to the plasma membrane, the distance between Gag and gRNA decreases together with an increase of gRNA packaging. Point mutations in the zinc finger patterns of the nucleocapsid domain of Gag caused an increase in the distance between Gag and gRNA as well as a sharp decrease of gRNA packaged into virions. Finally, we show that removal of stem loop 1 of the 5′-untranslated region does not interfere with gRNA packaging, whereas combined with the removal of stem loop 3 is sufficient to decrease but not abolish Gag-gRNA cluster formation and gRNA packaging. In conclusion, this morphometric analysis of Gag-gRNA cluster formation sheds new light on HIV-1 assembly that can be used to describe at nanoscale resolution other viral assembly steps involving RNA or protein–protein interactions.  相似文献   

4.
Kim YG  Maas S  Rich A 《Nucleic acids research》2001,29(5):1125-1131
Human immunodeficiency virus type 1 (HIV-1) and human T cell leukemia virus type II (HTLV-2) use a similar mechanism for –1 translational frameshifting to overcome the termination codon in viral RNA at the end of the gag gene. Previous studies have identified two important RNA signals for frameshifting, the slippery sequence and a downstream stem–loop structure. However, there have been somewhat conflicting reports concerning the individual contributions of these sequences. In this study we have performed a comprehensive mutational analysis of the cis-acting RNA sequences involved in HIV-1 gagpol and HTLV-2 gagpro frameshifting. Using an in vitro translation system we determined frameshifting efficiencies for shuffled HIV-1/HTLV-2 RNA elements in a background of HIV-1 or HTLV-2 sequences. We show that the ability of the slippery sequence and stem–loop to promote ribosomal frameshifting is influenced by the flanking upstream sequence and the nucleotides in the spacer element. A wide range of frameshift efficiency rates was observed for both viruses when shuffling single sequence elements. The results for HIV-1/HTLV-2 chimeric constructs represent strong evidence supporting the notion that the viral wild-type sequences are not designed for maximal frameshifting activity but are optimized to a level suited to efficient viral replication.  相似文献   

5.
Ono A  Waheed AA  Joshi A  Freed EO 《Journal of virology》2005,79(22):14131-14140
Human immunodeficiency virus type 1 (HIV-1) particle production, a process driven by the Gag polyprotein precursor, occurs on the plasma membrane in most cell types. The plasma membrane contains cholesterol-enriched microdomains termed lipid rafts, which can be isolated as detergent-resistant membrane (DRM). Previously, we and others demonstrated that HIV-1 Gag is associated with DRM and that disruption of Gag-raft interactions impairs HIV-1 particle production. However, the determinants of Gag-raft association remain undefined. In this study, we developed a novel epitope-based Gag multimerization assay to examine whether Gag assembly is essential for its association with lipid rafts. We observed that membrane-associated, full-length Gag is poorly detected by immunoprecipitation relative to non-membrane-bound Gag. This poor detection is due to assembly-driven masking of Gag epitopes, as denaturation greatly improves immunoprecipitation. Gag mutants lacking the Gag-Gag interaction domain located in the N terminus of the nucleocapsid (NC) were efficiently immunoprecipitated without denaturation, indicating that the epitope masking is caused by higher-order Gag multimerization. We used this assay to examine the relationship between Gag assembly and Gag binding to total cellular membrane and DRM. Importantly, a multimerization-defective NC mutant displayed wild-type levels of membrane binding and DRM association, indicating that NC-mediated Gag multimerization is dispensable for association of Gag with membrane or DRM. We also demonstrate that different properties of sucrose and iodixanol membrane flotation gradients may explain some discrepancies regarding Gag-raft interactions. This report offers new insights into the association of HIV-1 Gag with membrane and with lipid rafts.  相似文献   

6.
7.
Human immunodeficiency virus type 1 (HIV-1) normally assembles into particles of 100 to 120 nm in diameter by budding through the plasma membrane of the cell. The Gag polyprotein is the only viral protein that is required for the formation of these particles. We have used an in vitro assembly system to examine the assembly properties of purified, recombinant HIV-1 Gag protein and of Gag missing the C-terminal p6 domain (Gag Δp6). This system was used previously to show that the CA-NC fragment of HIV-1 Gag assembled into cylindrical particles. We now report that both HIV-1 Gag and Gag Δp6 assemble into small, 25- to 30-nm-diameter spherical particles in vitro. The multimerization of Gag Δp6 into units larger than dimers and the formation of spherical particles required nucleic acid. Removal of the nucleic acid with NaCl or nucleases resulted in the disruption of the multimerized complexes. We conclude from these results that (i) N-terminal extension of HIV-1 CA-NC to include the MA domain results in the formation of spherical, rather than cylindrical, particles; (ii) nucleic acid is required for the assembly and maintenance of HIV-1 Gag Δp6 virus-like particles in vitro and possibly in vivo; (iii) a wide variety of RNAs or even short DNA oligonucleotides will support assembly; (iv) protein-protein interactions within the particle must be relatively weak; and (v) recombinant HIV-1 Gag Δp6 and nucleic acid are not sufficient for the formation of normal-sized particles.  相似文献   

8.
The human immunodeficiency virus (HIV) Pr55Gag precursor proteins direct virus particle assembly. While Gag-Gag protein interactions which affect HIV assembly occur in the capsid (CA) domain of Pr55Gag, the nucleocapsid (NC) domain, which functions in viral RNA encapsidation, also appears to participate in virus assembly. In order to dissect the roles of the NC domain and the p6 domain, the C-terminal Gag protein domain, we examined the effects of NC and p6 mutations on virus assembly and RNA encapsidation. In our experimental system, the p6 domain did not appear to affect virus release efficiency but p6 deletions and truncations reduced the specificity of genomic HIV-1 RNA encapsidation. Mutations in the nucleocapsid region reduced particle release, especially when the p2 interdomain peptide or the amino-terminal portion of the NC region was mutated, and NC mutations also reduced both the specificity and the efficiency of HIV-1 RNA encapsidation. These results implicated a linkage between RNA encapsidation and virus particle assembly or release. However, we found that the mutant ApoMTRB, in which the nucleocapsid and p6 domains of HIV-1 Pr55Gag were replaced with the Bacillus subtilis MtrB protein domain, released particles efficiently but packaged no detectable RNA. These results suggest that, for the purposes of virus-like particle assembly and release, NC can be replaced by a protein that does not appear to encapsidate RNA.  相似文献   

9.
Many well-characterized examples of antisense RNAs from prokaryotic systems involve hybridization of the looped regions of stem–loop RNAs, presumably due to the high thermodynamic stability of the resulting loop–loop and loop–linear interactions. In this study, the identification of RNA stem–loops that inhibit U1A protein binding to the hpII RNA through RNA–RNA interactions was attempted using a bacterial reporter system based on phage λ N-mediated antitermination. As a result, loop sequences possessing 7–8 base complementarity to the 5′ region of the boxA element important for functional antitermination complex formation, but not the U1 hpII loop, were identified. In vitro and in vivo mutational analysis strongly suggested that the selected loop sequences were binding to the boxA region, and that the structure of the antisense stem–loop was important for optimal inhibitory activity. Next, in an attempt to demonstrate the ability to inhibit the interaction between the U1A protein and the hpII RNA, the rational design of an RNA stem–loop that inhibits U1A-binding to a modified hpII was carried out. Moderate inhibitory activity was observed, showing that it is possible to design and select antisense RNA stem–loops that disrupt various types of RNA–protein interactions.  相似文献   

10.
To produce progeny virus, human immunodeficiency virus type I (HIV-1) Gag assembles into capsids that package the viral genome and bud from the infected cell. During assembly of immature capsids, Gag traffics through a pathway of assembly intermediates (AIs) that contain the cellular adenosine triphosphatase ABCE1 (ATP-binding cassette protein E1). In this paper, we showed by coimmunoprecipitation and immunoelectron microscopy (IEM) that these Gag-containing AIs also contain endogenous processing body (PB)-related proteins, including AGO2 and the ribonucleic acid (RNA) helicase DDX6. Moreover, we found a similar complex containing ABCE1 and PB proteins in uninfected cells. Additionally, knockdown and rescue studies demonstrated that the RNA helicase DDX6 acts enzymatically to facilitate capsid assembly independent of RNA packaging. Using IEM, we localized the defect in DDX6-depleted cells to Gag multimerization at the plasma membrane. We also confirmed that DDX6 depletion reduces production of infectious HIV-1 from primary human T cells. Thus, we propose that assembling HIV-1 co-opts a preexisting host complex containing cellular facilitators such as DDX6, which the virus uses to catalyze capsid assembly.  相似文献   

11.
The human immunodeficiency virus type 1 (HIV-1) Gag precursor protein Pr55(Gag) drives the assembly and release of virus-like particles in the infected cell. The capsid (CA) domain of Gag plays an important role in these processes by promoting Gag-Gag interactions during assembly. The C-terminal domain (CTD) of CA contains two dileucine-like motifs (L189/L190 and I201/L202) implicated in regulating the localization of Gag to multivesicular bodies (MVBs). These dileucine-like motifs are located in the vicinity of the CTD dimer interface, a region of CA critical for Gag-Gag interactions during virus assembly and CA-CA interactions during core formation. To study the importance of the CA dileucine-like motifs in various aspects of HIV-1 replication, we introduced a series of mutations into these motifs in the context of a full-length, infectious HIV-1 molecular clone. CA mutants LL189,190AA and IL201,202AA were both severely impaired in virus particle production because of a variety of defects in the binding of Gag to membrane, Gag multimerization, and CA folding. In contrast to the model suggesting that the CA dileucine-like motifs regulate MVB targeting, the IL201,202AA mutation did not alter Gag localization to the MVB in either HeLa cells or macrophages. Revertants of single-amino-acid substitution mutants were obtained that no longer contained dileucine-like motifs but were nevertheless fully replication competent. The varied phenotypes of the mutants reported here provide novel insights into the interplay among Gag multimerization, membrane binding, virus assembly, CA dimerization, particle maturation, and virion infectivity.  相似文献   

12.
Human immunodeficiency virus type 1 (HIV-1) assembly takes place at the plasma membrane of cells and is directed by the Pr55(Gag) polyprotein (Gag). One of the essential steps in the assembly process is the multimerization of Gag. We have developed a novel fluorescence resonance energy transfer (FRET) assay for the detection of protein-protein interactions between Gag molecules. We demonstrate that Gag multimerization takes place primarily on cellular membranes, with the majority of these interactions occurring on the plasma membrane. However, distinct sites of Gag-Gag interaction are also present at punctate intracellular locations. The I domain is a functional assembly domain within the nucleocapsid region of Gag that affects particle density, the subcellular localization of Gag, and the formation of detergent-resistant Gag protein complexes. Results from this study provide evidence that the I domain mediates Gag-Gag interactions. Using Gag-fluorescent protein fusion constructs that were previously shown to define the minimal I domain within HIV-1 Pr55(Gag), we show by FRET techniques that protein-protein interactions are greatly diminished when Gag proteins lacking the I domain are expressed. Gag-Tsg101 interactions are also seen in living cells and result in a shift of Tsg101 to the plasma membrane. The results within this study provide direct evidence that the I domain mediates protein-protein interactions between Gag molecules. Furthermore, this study establishes FRET as a powerful tool for the detection of protein-protein interactions involved in retrovirus assembly.  相似文献   

13.
The 3′X domain of hepatitis C virus is a strongly conserved structure located at the 3′ terminus of the viral genomic RNA. This domain modulates the replication and translation processes of the virus in conjunction with an upstream 5BSL3.2 stem–loop, and contains a palindromic sequence that facilitates RNA dimerization. Based on nuclear magnetic resonance spectroscopy and gel electrophoresis, we report here that domain 3′X adopts a structure composed of two stem–loops, and not three hairpins or a mixture of folds, as previously proposed. This structure exposes unpaired terminal nucleotides after a double-helical stem and palindromic bases in an apical loop, favoring genomic RNA replication and self-association. At higher ionic strength the domain forms homodimers comprising an intermolecular duplex of 110 nucleotides. The 3′X sequences can alternatively form heterodimers with 5BSL3.2. This contact, reported to favor translation, likely involves local melting of one of the 3′X stem–loops.  相似文献   

14.
We investigated the mechanism by which the cholesterol-binding compound amphotericin B methyl ester (AME) inhibits human immunodeficiency virus type 1 (HIV-1) particle production. We observed no significant effect of AME on Gag binding to the plasma membrane, Gag association with lipid rafts, or Gag multimerization, indicating that the mechanism of inhibition by AME is distinct from that by cholesterol depletion. Electron microscopy analysis indicated that AME significantly disrupts virion morphology. Interestingly, we found that AME does not inhibit the release of Vpu-defective HIV-1 or Vpu retroviruses such as murine leukemia virus and simian immunodeficiency virus. We demonstrated that the ability of Vpu to counter the activity of CD317/BST-2/tetherin is markedly reduced by AME. These results indicate that AME interferes with the anti-CD317/BST-2/tetherin function of Vpu.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) Gag is the main structural protein driving assembly and release of virions from infected cells. Gag alone is capable of self-assembly in vitro, but host factors have been shown to play a role in efficient viral replication and particle morphogenesis within the living cell. In a series of affinity purification experiments, we identified the cellular protein Lyric to be an HIV-1 Gag-interacting protein. Lyric was previously described to be an HIV-inducible gene and is involved in various signaling pathways. Gag interacts with endogenous Lyric via its matrix (MA) and nucleocapsid (NC) domains. This interaction requires Gag multimerization and Lyric amino acids 101 to 289. Endogenous Lyric is incorporated into HIV-1 virions and is cleaved by the viral protease. Gag-Lyric interaction was also observed for murine leukemia virus and equine infectious anemia virus, suggesting that it represents a conserved feature among retroviruses. Expression of the Gag binding domain of Lyric increased Gag expression levels and viral infectivity, whereas expression of a Lyric mutant lacking the Gag binding site resulted in lower Gag expression and decreased viral infectivity. The results of the current study identify Lyric to be a cellular interaction partner of HIV-1 Gag and hint at a potential role in regulating infectivity. Further experiments are needed to elucidate the precise role of this interaction.  相似文献   

16.
Murine leukemia virus (MLV) can efficiently spread in tissue cultures by polarizing assembly to virological synapses. The viral envelope glycoprotein (Env) establishes cell-cell contacts and subsequently recruits Gag by a process that depends on its cytoplasmic tail. MLV Gag is recruited to virological synapses through the matrix domain (MA) (J. Jin, F. Li, and W. Mothes, J. Virol. 85:7672–7682, 2011). However, how MA targets Gag to sites of cell-cell contact remains unknown. Here we report that basic residues within MA are critical for directing MLV Gag to virological synapses. Alternative membrane targeting domains (MTDs) containing multiple basic residues can efficiently substitute MA to direct polarized assembly. Similarly, mutations in the polybasic cluster of MA that disrupt Gag polarization can be rescued by N-terminal addition of MTDs containing basic residues. MTDs containing basic residues alone fail to be targeted to the virological synapse. Systematic deletion experiments reveal that domains within Gag known to mediate Gag multimerization are also required. Thus, our data predict the existence of a specific “acidic” interface at virological synapses that mediates the recruitment of MLV Gag via the basic cluster of MA and Gag multimerization.  相似文献   

17.
Wang SW  Aldovini A 《Journal of virology》2002,76(23):11853-11865
The nucleocapsid (NC) domain of retroviruses plays a critical role in specific viral RNA packaging and virus assembly. RNA is thought to facilitate viral particle assembly, but the results described here with NC mutants indicate that it also plays a critical role in particle integrity. We investigated the assembly and integrity of particles produced by the human immunodeficiency virus type 1 M1-2/BR mutant virus, in which 10 of the 13 positive residues of NC have been replaced with alanines and incorporation of viral genomic RNA is virtually abolished. We found that the mutations in the basic residues of NC did not disrupt Gag assembly at the cell membrane. The mutant Gag protein can assemble efficiently at the cell membrane, and viral proteins are detected outside the cell as efficiently as they are for the wild type. However, only approximately 10% of the Gag molecules present in the supernatant of this mutant sediment at the correct density for a retroviral particle. The reduction of positive charge in the NC basic domain of the M1-2/BR virus adversely affects both the specific and nonspecific RNA binding properties of NC, and thus the assembled Gag polyprotein does not bind significant amounts of viral or cellular RNA. We found a direct correlation between the percentage of Gag associated with sedimented particles and the amount of incorporated RNA. We conclude that RNA binding by Gag, whether the RNA is viral or not, is critical to retroviral particle integrity after cell membrane assembly and is less important for Gag-Gag interactions during particle assembly and release.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1) Gag multimerization and membrane binding are required for particle formation. However, it is unclear what constitutes a minimal plasma membrane-specific targeting signal and what role the matrix (MA) globular head and other Gag domains play in membrane targeting. Here, we use membrane flotation and microscopic analysis of Gag deletion mutants to demonstrate that the HIV-1 MA globular head inhibits a plasma membrane-specific targeting signal contained within the six amino-terminal MA residues. MA-mediated inhibition is relieved by concentration-dependent Gag multimerization and imparts a high degree of cooperativity on Gag-membrane association. This cooperativity may confer temporal and spatial regulation on HIV-1 assembly.  相似文献   

19.
The key step in bacterial translation is formation of the pre-initiation complex. This requires initial contacts between mRNA, fMet-tRNA and the 30S subunit of the ribosome, steps that limit the initiation of translation. Here we report a method for improving translational initiation, which allows expression of several previously non-expressible genes. This method has potential applications in heterologous protein synthesis and high-throughput expression systems. We introduced a synthetic RNA stem–loop (stem length, 7 bp; ΔG0 = –9.9 kcal/mol) in front of various gene sequences. In each case, the stem–loop was inserted 15 nt downstream from the start codon. Insertion of the stem–loop allowed in vitro expression of five previously non-expressible genes and enhanced the expression of all other genes investigated. Analysis of the RNA structure proved that the stem–loop was formed in vitro, and demonstrated that stabilization of the ribosome binding site is due to stem–loop introduction. By theoretical RNA structure analysis we showed that the inserted RNA stem–loop suppresses long-range interactions between the translation initiation domain and gene-specific mRNA sequences. Thus the inserted RNA stem–loop supports the formation of a separate translational initiation domain, which is more accessible to ribosome binding.  相似文献   

20.
The minimal protein requirements that drive virus-like particle formation of human immunodeficiency virus type 1 (HIV-1) have been established. The C-terminal domain of capsid (CTD-CA) and nucleocapsid (NC) are the most important domains in a so-called minimal Gag protein (mGag). The CTD is essential for Gag oligomerization. NC is known to bind and encapsidate HIV-1 genomic RNA. The spacer peptide, SP1, located between CA and NC is important for the multimerization process, viral maturation and recognition of HIV-1 genomic RNA by NC. In this study, we show that NC in the context of an mGag protein binds HIV-1 genomic RNA with almost 10-fold higher affinity. The protein region encompassing the 11th alpha-helix of CA and the proposed alpha-helix in the CA/SP1 boundary region play important roles in this increased binding capacity. Furthermore, sequences downstream from stem loop 4 of the HIV-1 genomic RNA are also important for this RNA-protein interaction. In gel shift assays using purified mGag and a model RNA spanning the region from +223 to +506 of HIV-1 genomic RNA, we have identified an early complex (EC) formation between 2 proteins and 1 RNA molecule. This EC was not present in experiments performed with a mutant mGag protein, which contains a CTD dimerization mutation (M318A). These data suggest that the dimerization interface of the CTD plays an important role in EC formation, and, as a consequence, in RNA-protein association and multimerization. We propose a model for the RNA-protein interaction, based on previous results and those presented in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号