首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the tremendous increase of publicly available single-cell RNA-sequencing (scRNA-seq) datasets, bioinformatics methods based on gene co-expression network are becoming efficient tools for analyzing scRNA-seq data, improving cell type prediction accuracy and in turn facilitating biological discovery. However, the current methods are mainly based on overall co-expression correlation and overlook co-expression that exists in only a subset of cells, thus fail to discover certain rare cell types and sensitive to batch effect. Here, we developed independent component analysis-based gene co-expression network inference (ICAnet) that decomposed scRNA-seq data into a series of independent gene expression components and inferred co-expression modules, which improved cell clustering and rare cell-type discovery. ICAnet showed efficient performance for cell clustering and batch integration using scRNA-seq datasets spanning multiple cells/tissues/donors/library types. It works stably on datasets produced by different library construction strategies and with different sequencing depths and cell numbers. We demonstrated the capability of ICAnet to discover rare cell types in multiple independent scRNA-seq datasets from different sources. Importantly, the identified modules activated in acute myeloid leukemia scRNA-seq datasets have the potential to serve as new diagnostic markers. Thus, ICAnet is a competitive tool for cell clustering and biological interpretations of single-cell RNA-seq data analysis.  相似文献   

2.
The freshwater planarian Dugesia japonica maintains an abundant heterogeneous cell population called neoblasts, which include adult pluripotent stem cells. Thus, it is an excellent model organism for stem cell and regeneration research. Recently, many single-cell RNA sequencing (scRNA-seq) databases of several model organisms, including other planarian species, have become publicly available; these are powerful and useful resources to search for gene expression in various tissues and cells. However, the only scRNA-seq dataset for D. japonica has been limited by the number of genes detected. Herein, we collected D. japonica cells, and conducted an scRNA-seq analysis. A novel, automatic, iterative cell clustering strategy produced a dataset of 3,404 cells, which could be classified into 63 cell types based on gene expression profiles. We introduced two examples for utilizing the scRNA-seq dataset in this study using D. japonica. First, the dataset provided results consistent with previous studies as well as novel functionally relevant insights, that is, the expression of DjMTA and DjP2X-A genes in neoblasts that give rise to differentiated cells. Second, we conducted an integrative analysis of the scRNA-seq dataset and time-course bulk RNA-seq of irradiated animals, demonstrating that the dataset can help interpret differentially expressed genes captured via bulk RNA-seq. Using the R package “Seurat” and GSE223927, researchers can easily access and utilize this dataset.  相似文献   

3.
4.
Hepatocellular carcinoma (HCC) tumors exhibit high heterogeneity. However, current understanding of tumor cell heterogeneity of HCC and the association with prognosis remains very limited. In the present study, we collected and examined tumor tissue from one HCC patient by single-cell RNA sequencing (scRNA-seq). We identified 5753 cells and 16 clusters including hepatocytes/cancer cells, T cells, macrophages, endothelial cells, fibroblasts, NK cells, neutrophils, and B cells. In six tumor cell subclusters, we identified a cluster of proliferative tumor cells associated with poor prognosis. We downloaded scRNA-seq data of GSE125449 from the NCBI-GEO as validation dataset, and found that a cluster of hepatocytes exhibited high proliferation activity in HCC. Furthermore, we identified a gene signature related to the proliferation of HCC cells. This gene signature is efficient to classify HCC patients into two groups with distinct prognosis in both TCGA and ICGC database cohorts. Our results reveal the intratumoral heterogeneity of HCC at single cell level and identify a gene signature associated with HCC prognosis.  相似文献   

5.
6.
《Genomics》2023,115(4):110644
Single-cell RNA sequencing (scRNA-seq) analysis have provided an unprecedented resolution for the studies on diabetic retinopathy (DR). However, the early changes in the retina in diabetes remain unclear. A total of 8 human and mouse scRNA-seq datasets, containing 276,402 cells were analyzed individually to comprehensively delineate the retinal cell atlas. The neural retinas were isolated from the type 2 diabetes (T2D) and control mice, and scRNA-seq analysis was conducted to evaluate the early effects of diabetes on the retina. Bipolar cell (BC) heterogeneity were identified. We found some stable BCs across multiple datasets, and explored their biological functions. A new RBC subtype (Car8_RBC) in the mouse retina was validated using the multi-color immunohistochemistry. AC149090.1 was significantly upregulated in the rod cells, ON cone BCs (CBCs), OFF CBCs, and RBCs in T2D mice. Additionally, the interneurons, especially BCs, were the most vulnerable cells to diabetes by integrating scRNA-seq and genome-wide association studies (GWAS) analyses. In conclusion, this study delineated a cross-species retinal cell atlas and uncovered the early pathological alterations in the retina of T2D mice.  相似文献   

7.
8.
屈亮  李素  仇华吉 《遗传》2020,(3):269-277
单细胞RNA测序(single-cell RNA sequencing, scRNA-seq)技术已经成为不同领域中研究细胞异质性的有效工具。在病毒研究领域中,利用该技术分析病毒和细胞的转录组,可以在单细胞水平上检测病毒感染的动态变化,了解病毒与细胞间复杂的相互作用。本文简述了scRNA-seq技术,着重介绍病毒感染宿主细胞后scRNA-seq研究的最新进展,同时也描述了细胞周期、基因表达、细胞状态等细胞异质性对病毒感染过程的影响,以及病毒变异对其本身感染过程的影响。此外,本文还分析了scRNA-seq在研究病毒–宿主互作动态变化方面具有的独特优势,及其在病毒研究领域中广阔的应用前景,为揭示病毒的感染与致病机制、抗病毒靶标的开发等提供参考。  相似文献   

9.
Advances in single-cell RNA sequencing (scRNA-seq) have led to successes in discovering novel cell types and understanding cellular heterogeneity among complex cell populations through cluster analysis. However, cluster analysis is not able to reveal continuous spectrum of states and underlying gene expression programs (GEPs) shared across cell types. We introduce scAAnet, an autoencoder for single-cell non-linear archetypal analysis, to identify GEPs and infer the relative activity of each GEP across cells. We use a count distribution-based loss term to account for the sparsity and overdispersion of the raw count data and add an archetypal constraint to the loss function of scAAnet. We first show that scAAnet outperforms existing methods for archetypal analysis across different metrics through simulations. We then demonstrate the ability of scAAnet to extract biologically meaningful GEPs using publicly available scRNA-seq datasets including a pancreatic islet dataset, a lung idiopathic pulmonary fibrosis dataset and a prefrontal cortex dataset.  相似文献   

10.
Pseudotime analysis from scRNA-seq data enables to characterize the continuous progression of various biological processes, such as the cell cycle. Cell cycle plays an important role in cell fate decisions and differentiation and is often regarded as a confounder in scRNA-seq data analysis when analyzing the role of other factors. Therefore, accurate prediction of cell cycle pseudotime and identification of cell cycle stages are important steps for characterizing the development-related biological processes. Here, we develop CCPE, a novel cell cycle pseudotime estimation method to characterize cell cycle timing and identify cell cycle phases from scRNA-seq data. CCPE uses a discriminative helix to characterize the circular process of the cell cycle and estimates each cell''s pseudotime along the cell cycle. We evaluated the performance of CCPE based on a variety of simulated and real scRNA-seq datasets. Our results indicate that CCPE is an effective method for cell cycle estimation and competitive in various applications compared with other existing methods. CCPE successfully identified cell cycle marker genes and is robust to dropout events in scRNA-seq data. Accurate prediction of the cell cycle using CCPE can also effectively facilitate the removal of cell cycle effects across cell types or conditions.  相似文献   

11.
The effects of growth- and gender-related differences on satellite cell proliferation and differentiation were investigated using satellite cells isolated from the pectoralis major muscle of a turkey line selected for increased 16-week body weight (F-line) and its unselected randombred control (RBC2-line). Proliferation rates within the F- and RBC2-lines did not differ between sexes. The F-line male and female satellite cells when compared to the RBC2-line male and female satellite cells proliferated at a faster rate. Differentiation rates were increased for the F-line male cells compared to both the F-line female and RBC2-line male satellite cells. No difference in differentiation rate was noted within the RBC2-line satellite cells. For satellite cells from females, the RBC2-line differentiated faster than the F-line. Morphological data on myotube length and the number of nuclei per myotube supported the differentiation data in that F-line male satellite cells had the longest myotubes with the most nuclei, there was no significant difference between myotubes within the RBC2-line, and female-derived myotubes from the RBC2-line were longer than those of the F-line by 96 h of fusion. These data are suggestive of both growth- and gender- related differences in satellite cell proliferation and differentiation.  相似文献   

12.
CellDepot containing over 270 datasets from 8 species and many tissues serves as an integrated web application to empower scientists in exploring single-cell RNA-seq (scRNA-seq) datasets and comparing the datasets among various studies through a user-friendly interface with advanced visualization and analytical capabilities. To begin with, it provides an efficient data management system that users can upload single cell datasets and query the database by multiple attributes such as species and cell types. In addition, the graphical multi-logic, multi-condition query builder and convenient filtering tool backed by MySQL database system, allows users to quickly find the datasets of interest and compare the expression of gene(s) across these. Moreover, by embedding the cellxgene VIP tool, CellDepot enables fast exploration of individual dataset in the manner of interactivity and scalability to gain more refined insights such as cell composition, gene expression profiles, and differentially expressed genes among cell types by leveraging more than 20 frequently applied plotting functions and high-level analysis methods in single cell research. In summary, the web portal available at http://celldepot.bxgenomics.com, prompts large scale single cell data sharing, facilitates meta-analysis and visualization, and encourages scientists to contribute to the single-cell community in a tractable and collaborative way. Finally, CellDepot is released as open-source software under MIT license to motivate crowd contribution, broad adoption, and local deployment for private datasets.  相似文献   

13.
14.
Clustering is a prevalent analytical means to analyze single cell RNA sequencing (scRNA-seq) data but the rapidly expanding data volume can make this process computationally challenging. New methods for both accurate and efficient clustering are of pressing need. Here we proposed Spearman subsampling-clustering-classification (SSCC),a new clustering framework based on random projection and feature construction,for large-scale scRNA-seq data. SSCC greatly improves clustering accuracy,robustness,and computational efficacy for various state-of-the-art algorithms benchmarked on multiple real datasets. On a dataset with 68,578 human blood cells,SSCC achieved 20%improvement for clustering accuracy and 50-fold acceleration,but only consumed 66%memory usage,compared to the widelyused software package SC3. Compared to k-means,the accuracy improvement of SSCC can reach 3-fold. An R implementation of SSCC is available at https://github.com/Japrin/sscClust.  相似文献   

15.
In this work, we describe the development of Polar Gini Curve, a method for characterizing cluster markers by analyzing single-cell RNA sequencing (scRNA-seq) data. Polar Gini Curve combines the gene expression and the 2D coordinates ("spatial") information to detect patterns of uniformity in any clustered cells from scRNA-seq data. We demonstrate that Polar Gini Curve can help users characterize the shape and density distribution of cells in a particular cluster, which can be generated during routine scRNA-seq data analysis. To quantify the extent to which a gene is uniformly distributed in a cell cluster space, we combine two polar Gini curves (PGCs)—one drawn upon the cell-points expressing the gene (the"foreground curve") and the other drawn upon all cell-points in the cluster (the"background curve"). We show that genes with highly dissimilar foreground and background curves tend not to uniformly distributed in the cell cluster—thus having spatially divergent gene expression patterns within the cluster. Genes with similar foreground and background curves tend to uniformly distributed in the cell cluster—thus having uniform gene expression patterns within the cluster. Such quantitative attributes of PGCs can be applied to sensitively discover biomarkers across clusters from scRNA-seq data. We demonstrate the performance of the Polar Gini Curve framework in several simulation case studies. Using this framework to analyze a real-world neonatal mouse heart cell dataset, the detected biomarkers may characterize novel subtypes of cardiac muscle cells. The source code and data for Polar Gini Curve could be found at http://discovery.informatics.uab.edu/PGC/ or https://figshare.com/projects/Polar_Gini_Curve/76749.  相似文献   

16.
17.
The single-cell RNA sequencing (scRNA-seq) technologies obtain gene expression at single-cell resolution and provide a tool for exploring cell heterogeneity and cell types. As the low amount of extracted mRNA copies per cell, scRNA-seq data exhibit a large number of dropouts, which hinders the downstream analysis of the scRNA-seq data. We propose a statistical method, SDImpute (Single-cell RNA-seq Dropout Imputation), to implement block imputation for dropout events in scRNA-seq data. SDImpute automatically identifies the dropout events based on the gene expression levels and the variations of gene expression across similar cells and similar genes, and it implements block imputation for dropouts by utilizing gene expression unaffected by dropouts from similar cells. In the experiments, the results of the simulated datasets and real datasets suggest that SDImpute is an effective tool to recover the data and preserve the heterogeneity of gene expression across cells. Compared with the state-of-the-art imputation methods, SDImpute improves the accuracy of the downstream analysis including clustering, visualization, and differential expression analysis.  相似文献   

18.
Technological advances have enabled us to profile multiple molecular layers at unprecedented single-cell resolution and the available datasets from multiple samples or domains are growing. These datasets, including scRNA-seq data, scATAC-seq data and sc-methylation data, usually have different powers in identifying the unknown cell types through clustering. So, methods that integrate multiple datasets can potentially lead to a better clustering performance. Here we propose coupleCoC+ for the integrative analysis of single-cell genomic data. coupleCoC+ is a transfer learning method based on the information-theoretic co-clustering framework. In coupleCoC+, we utilize the information in one dataset, the source data, to facilitate the analysis of another dataset, the target data. coupleCoC+ uses the linked features in the two datasets for effective knowledge transfer, and it also uses the information of the features in the target data that are unlinked with the source data. In addition, coupleCoC+ matches similar cell types across the source data and the target data. By applying coupleCoC+ to the integrative clustering of mouse cortex scATAC-seq data and scRNA-seq data, mouse and human scRNA-seq data, mouse cortex sc-methylation and scRNA-seq data, and human blood dendritic cells scRNA-seq data from two batches, we demonstrate that coupleCoC+ improves the overall clustering performance and matches the cell subpopulations across multimodal single-cell genomic datasets. coupleCoC+ has fast convergence and it is computationally efficient. The software is available at https://github.com/cuhklinlab/coupleCoC_plus.  相似文献   

19.
Cell-cell interactions are vital for numerous biological processes including development, differentiation, and response to inflammation. Currently, most methods for studying interactions on scRNA-seq level are based on curated databases of ligands and receptors. While those methods are useful, they are limited to our current biological knowledge. Recent advances in single cell protocols have allowed for physically interacting cells to be captured, and as such we have the potential to study interactions in a complemantary way without relying on prior knowledge. We introduce a new method based on Latent Dirichlet Allocation (LDA) for detecting genes that change as a result of interaction. We apply our method to synthetic datasets to demonstrate its ability to detect genes that change in an interacting population compared to a reference population. Next, we apply our approach to two datasets of physically interacting cells to identify the genes that change as a result of interaction, examples include adhesion and co-stimulatory molecules which confirm physical interaction between cells. For each dataset we produce a ranking of genes that are changing in subpopulations of the interacting cells. In addition to the genes discussed in the original publications, we highlight further candidates for interaction in the top 100 and 300 ranked genes. Lastly, we apply our method to a dataset generated by a standard droplet-based protocol not designed to capture interacting cells, and discuss its suitability for analysing interactions. We present a method that streamlines detection of interactions and does not require prior clustering and generation of synthetic reference profiles to detect changes in expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号