首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ackermann M  Beyer A 《PLoS genetics》2012,8(2):e1002463
Epistatic genetic interactions are key for understanding the genetic contribution to complex traits. Epistasis is always defined with respect to some trait such as growth rate or fitness. Whereas most existing epistasis screens explicitly test for a trait, it is also possible to implicitly test for fitness traits by searching for the over- or under-representation of allele pairs in a given population. Such analysis of imbalanced allele pair frequencies of distant loci has not been exploited yet on a genome-wide scale, mostly due to statistical difficulties such as the multiple testing problem. We propose a new approach called Imbalanced Allele Pair frequencies (ImAP) for inferring epistatic interactions that is exclusively based on DNA sequence information. Our approach is based on genome-wide SNP data sampled from a population with known family structure. We make use of genotype information of parent-child trios and inspect 3×3 contingency tables for detecting pairs of alleles from different genomic positions that are over- or under-represented in the population. We also developed a simulation setup which mimics the pedigree structure by simultaneously assuming independence of the markers. When applied to mouse SNP data, our method detected 168 imbalanced allele pairs, which is substantially more than in simulations assuming no interactions. We could validate a significant number of the interactions with external data, and we found that interacting loci are enriched for genes involved in developmental processes.  相似文献   

2.
3.
4.
A new method of obtaining allele frequency estimates is described. The method may prove useful when maximum likelihood estimates are not available. No assumptions regarding the absence of alleles are required. Errors of estimates have not been obtained, but the process seems to converge to maximum likelihood.  相似文献   

5.
Klei L  Roeder K 《Human genetics》2007,121(5):549-557
Samples consisting of a mix of unrelated cases and controls, small pedigrees, and much larger pedigrees present a unique challenge for association studies. Few methods are available for efficient analysis of such a broad spectrum of data structures. In this paper we introduce a new matching statistic that is well suited to complex data structures and compare it with frequency-based methods available in the literature. To investigate and compare the power of these methods we simulate datasets based on complex pedigrees. We examine the influence of various levels of linkage disequilibrium (LD) of the disease allele with a marker allele (or equivalently a haplotype). For low frequency marker alleles/haplotypes, frequency-based statistics are more powerful in detecting association. In contrast, for high frequency marker alleles, the matching statistic has greater power. The highest power for frequency-based statistics occurs when the disease allele frequency closely matches the frequency of the linked marker allele. In contrast maximum power of the matching statistic always occurs for intermediate marker allele frequency regardless of the disease allele frequency. Moreover, the matching and frequency-based statistics exhibit little correlation. We conclude that these two approaches can be viewed as complementary in finding possible association between a disease and a marker for many different situations.  相似文献   

6.
7.
The distributions of allele sizes at eight simple-sequence repeat (SSR) or microsatellite loci in chimpanzees are found and compared with the distributions previously obtained from several human populations. At several loci, the differences in average allele size between chimpanzees and humans are sufficiently small that there might be a constraint on the evolution of average allele size. Furthermore, a model that allows for a bias in the mutation process shows that for some loci a weak bias can account for the observations. Several alleles at one of the loci (Mfd 59) were sequenced. Differences between alleles of different lengths were found to be more complex than previously assumed. An 8-base-pair deletion was present in the nonvariable region of the chimpanzee locus. This locus contains a previously unrecognized repeated region, which is imperfect in humans and perfect in chimpanzees. The apparently greater opportunity for mutation conferred by the two perfect repeat regions in chimpanzees is reflected in the higher variance in repeat number at Mfd 59 in chimpanzees than in humans. These data indicate that interspecific differences in allele length are not always attributable to simple changes in the number of repeats.   相似文献   

8.
Stadler T 《Genetics》2011,188(3):663-672
In this article, I develop a methodology for inferring the transmission rate and reproductive value of an epidemic on the basis of genotype data from a sample of infected hosts. The epidemic is modeled by a birth-death process describing the transmission dynamics in combination with an infinite-allele model describing the evolution of alleles. I provide a recursive formulation for the probability of the allele frequencies in a sample of hosts and a Bayesian framework for estimating transmission rates and reproductive values on the basis of observed allele frequencies. Using the Bayesian method, I reanalyze tuberculosis data from the United States. I estimate a net transmission rate of 0.19/year [0.13, 0.24] and a reproductive value of 1.02 [1.01, 1.04]. I demonstrate that the allele frequency probability under the birth-death model does not follow the well-known Ewens' sampling formula that holds under Kingman's coalescent.  相似文献   

9.
The development of a complex multicellular organism requires a careful coordination of growth, cell division, cell differentiation and cell death. All these processes must be under intricate and coordinated control, as they have to be integrated across all tissues. Freshwater planarians are especially plastic, in that they constantly replace somatic tissues from a pool of adult somatic stem cells and continuously undergo growth and degrowth as adult animals in response to nutrient availability. During these processes they appear to maintain perfect scale of tissues and organs. These life history traits make them an ideal model system to study growth and degrowth. We have studied the unique planarian process of degrowth. When food is not available, planarians are able to degrow to a minimum size, without any signs of adverse physiological outcomes. For example they maintain full regenerative capacity. Our current knowledge of how this is regulated at the molecular and cellular level is very limited. Planarian degrowth has been reported to result from a decrease in cell number rather than a decrease in cell size. Thus one obvious explanation for degrowth would be a decrease in stem cell proliferation. However evidence in the literature suggests this is not the case. We show that planarians maintain normal basal mitotic rates during degrowth but that the number of stem cell progeny decreases during starvation and degrowth. These observations are reversed upon feeding, indicating that they are dependent on nutritional status. An increase in cell death is also observed during degrowth, which is not rapidly reversed upon feeding. We conclude that degrowth is a result of cell death decreasing cell numbers and that the dynamics of neoblast self-renewal and differentiation adapt to nutrient conditions to allow maintenance of the neoblast population during the period of starvation.  相似文献   

10.
11.
12.
13.
Mutant allele frequencies in domestic cats of Portugal and the Azores   总被引:2,自引:0,他引:2  
The genetic profiles of cat populations of mainland Portugal are basically similar to those of the adjacent Atlantic littoral. The profiles of Azorean populations, while relatively homogeneous among themselves, are strikingly different from the mainland. It is tentatively concluded that some form of selective migration was the most important contributing factor in establishing the differences.  相似文献   

14.
There is considerable debate about the methodologies used to estimate VNTR (Variable Number of Tandem Repeats) multi-locus genotype frequencies or odds of inclusion in forensic cases. To compare two of the methods in use, allele frequency distributions among six populations were compared and the effect of population heterogeneity on VNTR multi-locus genotype frequency estimation was examined. Genotype frequencies estimated from single population data were one or two orders of magnitude smaller than those estimated by picking the highest allele frequency in a group of subpopulations to estimate genotype frequencies using a ceiling principle. The average change does not appear to be very sensitive to the set of subpopulations used; four locus frequencies still give inclusion odds of one in a million or less. We think that use of the ceiling principle solves both the statistical problem engendered by subpopulation heterogeneity and the legal problem of assuming that the prepetrator and suspect belong to the same subpopulation. The counterintuitive fact of human genetic polymorphism is that it is easier to identify an individual than it is to identify the subpopulation, ethnic group or race to which that individual belongs.  相似文献   

15.
Most current linkage analyses make use of highly polymorphic DNA markers. Assigning correct allele frequencies for these markers may be extremely difficult in particular study populations. Designation of erroneous frequencies may result in false-positive evidence for linkage, as well as in failure to correctly exclude linkage. These effects are most pronounced in small pedigrees with key individuals unavailable for typing. The power to correctly detect true linkage does not appear to be greatly affected by inaccurate allele frequencies. Before linkage analyses are performed for specific pedigrees, it is recommended that simulation analyses be performed, followed by uncertainty and sensitivity analyses.  相似文献   

16.
Allele-frequency data have been assembled for 35 blood-protein loci in 17 of 19 recognized species of Macaca based on 29 published electrophoretic studies; studies of inbred captive colonies have been excluded. Data for 22 polymorphic loci are tabulated in detail for 43 geographic populations of these species. Calculated FST values provide a measure of intergroup genetic differentiation at various hierarchical levels—troop, locality, province, country or island, species, species group; polymorphism indices measure genetic variation. The greatest intraspecific genetic differentiation occurs at the level of island populations within species. The pattern of genetic variation among island populations appears to be relictual, suggesting that the reduced genetic variability of island populations of macaques is a result of postisolation genetic drift rather than founder effect. Interspecific relationships were investigated by means of a jackknifed Fitch-Margoliash algorithm, using Papio as outgroup. Phylogenetic inferences based on morphology and zoogeography. The reduced genetic variability that frequently characterizes insular macaque populations complicates phylogenetic interpretation of blood-protein evidence.  相似文献   

17.
Variation in climate, particularly temperature, is known to affect the genetic composition of populations. Although there have been many studies of latitudinal variation, comparisons of populations across altitudes or seasons, particularly for animal species, are less common. Here, we study genetic variation (microsatellite markers) in populations of Drosophila buzzatii collected along altitudinal gradients and in different seasons. We found no differences in genetic variation between 2 years or between seasons within years. However, there were numerous cases of significant associations between allele frequencies or expected heterozygosities and altitude, with more than half showing nonlinear relationships. While these associations indicate possible selection and local altitudinal adaptation, direct tests gave strong evidence for selection affecting two loci and weaker evidence for five other loci. Two loci that are located within an inversion (including the one with strongest evidence for selection) show a linear increase in genetic diversity with altitude, likely due to thermal selection. Parallel associations with altitude here and with latitude in Australian populations indicate that selection is operating on chromosomal regions marked by some of the loci.  相似文献   

18.
We conducted surveys of mutant allele frequencies of four cat populations in Arkansas and Tennessee during 2002. Our calculations and analyses support that Southwestern cat populations were relatively more genetically similar to each other than compared to cat populations in other areas of North America. However, the cat population of Fort Smith is slightly different from the other cat populations studied in the Southwestern United States. Although there is a clear significant spatial geographic pattern for many mutant coat allele frequencies in the United States and Canada cat populations (d, l, S, and W), our results revealed that there is not a significant isolation-by-distance model affecting these cat populations. Our data also support the historical migration hypothesis because our calculated allele frequencies were genetically similar to cat populations located in ancestral areas of Europe. Different phenograms, including new European cat genetic profiles, showed that the Southwestern cat populations studied are of a clear British origin. Therefore, migration routes of early Arkansas and Tennessee settlers help explain the similarities of allele frequencies among domestic cat populations.  相似文献   

19.
N. B. Todd  L. M. Todd 《Genetica》1976,46(2):183-192
The incidence of mutant phenotypes has been recorded in domestic cat populations of Istanbul, Izmir, Ankara and Trabzon. From this information, allele frequencies have been estimated for seven loci. These data are compared to those from adjacent countries, particularly Greece and Cyprus, and clinal maps of the region are presented for three of the mutants.  相似文献   

20.
The copines are a newly identified class of calcium-dependent, phospholipid binding proteins that are present in a wide range of organisms, including Paramecium, plants, Caenorhabditis elegans, mouse, and human. However, the biological functions of the copines are unknown. Here, we describe a humidity-sensitive copine mutant in Arabidopsis. Under nonpermissive, low-humidity conditions, the cpn1-1 mutant displayed aberrant regulation of cell death that included a lesion mimic phenotype and an accelerated hypersensitive response (HR). However, the HR in cpn1-1 showed no increase in sensitivity to low pathogen titers. Low-humidity-grown cpn1-1 mutants also exhibited morphological abnormalities, increased resistance to virulent strains of Pseudomonas syringae and Peronospora parasitica, and constitutive expression of pathogenesis-related (PR) genes. Growth of cpn1-1 under permissive, high-humidity conditions abolished the increased disease resistance, lesion mimic, and morphological mutant phenotypes but only partially alleviated the accelerated HR and constitutive PR gene expression phenotypes. The disease resistance phenotype of cpn1-1 suggests that the CPN1 gene regulates defense responses. Alternatively, the primary function of CPN1 may be the regulation of plant responses to low humidity, and the effect of the cpn1-1 mutation on disease resistance may be indirect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号