首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the inductive signals originating from the vegetal blastomeres of embryos of the sand dollar Peronella japonica, which is the only direct developing echinoid species that forms micromeres. To investigate the inductive signals, three different kinds of experimental embryos were produced: micromere-less embryos, in which all micromeres were removed at the 16-cell stage; chimeric embryos produced by an animal cap (eight mesomeres) recombined with a micromere quartet isolated from a 16-cell stage embryo; and chimeric embryos produced by an animal cap recombined with a macromere-derived layer, the veg1 or veg2 layer, isolated from a 64-cell stage embryo. Novel findings obtained from this study of the development of these embryos are as follows. Micromeres lack signals for endomesoderm specification, but are the origin of a signal establishing the oral–aboral (O–Ab) axis. Some non-micromere blastomeres, as well as micromeres, have the potential to form larval skeletons. Macromere descendants have endomesoderm-inducing potential. Based on these results, we propose the following scenario for the first step in the evolution of direct development in echinoids: micromeres lost the ability to send a signal endomesoderm induction so that the archenteron was formed autonomously by macromere descendants. The micromeres retained the ability to form larval spicules and to establish the O–Ab axis.  相似文献   

2.
All endodermal and mesenchymal cells of the sea urchin embryo descend from the vegetal plate, a thickened epithelium of approximately 50 cells arising at the early blastula stage. Cell types that derive from the vegetal plate are specified conditionally by inductive interactions with underlying micromeres, but the molecular details of vegetal-plate specification remain unresolved. In a search for regulatory proteins that have roles in vegetal-plate specification, a screen was performed to clone Krüppel/Krox-related genes from a Strongylocentrotus purpuratus embryo cDNA library. One newly identified clone, named SpKrox1, contained four zinc fingers and a leucine zipper domain. SpKrox1 expression was low in unfertilized eggs, increased severalfold to the early blastula stage and decreased between the early gastrula and pluteus stages. SpKrox1 mRNA was first seen in macromeres of 16-cell stage embryos and was restricted to cells of the developing vegetal plate thereafter. Vegetal-plate expression corresponded to a ring of cells around the blastopore and overlapped the expression patterns of other genes with potential roles in vegetal plate-specification. As the vegetal-plate cells invaginated into the blastopore, SpKrox1 expression was lost, suggesting that its role was not in endoderm differentiation per se but rather in the initial establishment of the vegetal plate.  相似文献   

3.
4.
In the sea urchin, entry of β-catenin into the nuclei of the vegetal cells at 4th and 5th cleavages is necessary for activation of the endomesoderm gene regulatory network. Beyond that, little is known about how the embryo uses maternal information to initiate specification. Here, experiments establish that of the three maternal Wnts in the egg, Wnt6 is necessary for activation of endodermal genes in the endomesoderm GRN. A small region of the vegetal cortex is shown to be necessary for activation of the endomesoderm GRN. If that cortical region of the egg is removed, addition of Wnt6 rescues endoderm. At a molecular level, the vegetal cortex region contains a localized concentration of Dishevelled (Dsh) protein, a transducer of the canonical Wnt pathway; however, Wnt6 mRNA is not similarly localized. Ectopic activation of the Wnt pathway, through the expression of an activated form of β-catenin, of a dominant-negative variant of GSK-3β or of Dsh itself, rescues endomesoderm specification in eggs depleted of the vegetal cortex. Knockdown experiments in whole embryos show that absence of Wnt6 produces embryos that lack endoderm, but those embryos continue to express a number of mesoderm markers. Thus, maternal Wnt6 plus a localized vegetal cortical molecule, possibly Dsh, is necessary for endoderm specification; this has been verified in two species of sea urchin. The data also show that Wnt6 is only one of what are likely to be multiple components that are necessary for activation of the entire endomesoderm gene regulatory network.  相似文献   

5.
6.
The micromeres at the 16-cell stage of sea urchin embryo have already been endowed with a faculty to self-differentiate into spicule-forming cells (11). The present experiment was designed to test whether the factor(s) necessary for such self-differentiation had already been localized at the 8-cell stage in an area corresponding to the presumptive micromere region in Hemicentrotus pulcherrimus. Since the blastomeres at the 8-cell stage are all equal in size in normal embryo, unequal 3rd cleavage, by which small blastomeres are pinched off toward the vegetal pole (precocious micromeres), was experimentally induced either by treatment with 4NQO (4-nitroquinoline-1-oxide) at the 2-cell stage or by continuous culture in Ca-free sea water. The precocious micromeres were cultured in vitro in natural sea water containing horse serum. Descendants of the precocious micromeres formed spicules. In comparison their spicule formation with that by the descendants of the micromere of normal embryo, no differences were found regarding 1) time of initiation of spicule formation, 2) rate of growth of spicule, 3) size and shape of resultant spicule and 4) percentage of clones which formed spicule. The fact indicates that factor(s) indispensable for self-differentiation into spicule-forming cells have already been localized near the vegetal pole as early as the 8-cell stage.  相似文献   

7.
8.
At the 16-cell stage, the sea urchin embryo is partitioned along the animal-vegetal axis into eight mesomeres, four macromeres, and four micromeres. The micromeres, unlike the other blastomeres, are autonomously specified to produce skeletogenic mesenchymal cells and are also required to induce the vegetal-plate territory. A long-held belief is that micromeres inherit localized maternal determinants that endow them with their cell autonomous behavior and inducing capabilities. Here, we present evidence that an orthodenticle-related protein, SpOtx appears transiently in nuclei of micromeres but not in nuclei of mesomeres and macromeres. At later stages of development, SpOtx was translocated into nuclei of all cells. To address the possibility that SpOtx was retained In the cytoplasm at early developmental stages we searched for cytoplasmic proteins that interact with SpOtx. A proline-rich region of SpOtx resembling an SH3-binding domain was used to screen an embryo cDNA expression library, and a cDNA clone was isolated and shown to be α-actinin. A yeast two-hybrid analysis showed a specific interaction between the proline-rich region of SpOtx and a putative SH3 domain of the sea urchin α-actinin. Because micromeres lack an actin-based cytoskeleton, the results suggested that, at the vegetal pole of the 16-cell stage embryo, SpOtx was translocated into micromere nuclei, whereas in other blastomeres SpOtx was actively retained in the cytoplasm by binding to α-actinin. The transient appearance of SpOtx in micromere nuclei may be associated with the specification of micromere cell fate. © 1996 Wiley-Liss, Inc.  相似文献   

9.
beta-Catenin has a central role in the early axial patterning of metazoan embryos. In the sea urchin, beta-catenin accumulates in the nuclei of vegetal blastomeres and controls endomesoderm specification. Here, we use in-vivo measurements of the half-life of fluorescently tagged beta-catenin in specific blastomeres to demonstrate a gradient in beta-catenin stability along the animal-vegetal axis during early cleavage. This gradient is dependent on GSK3beta-mediated phosphorylation of beta-catenin. Calculations show that the difference in beta-catenin half-life at the animal and vegetal poles of the early embryo is sufficient to produce a difference of more than 100-fold in levels of the protein in less than 2 hours. We show that dishevelled (Dsh), a key signaling protein, is required for the stabilization of beta-catenin in vegetal cells and provide evidence that Dsh undergoes a local activation in the vegetal region of the embryo. Finally, we report that GFP-tagged Dsh is targeted specifically to the vegetal cortex of the fertilized egg. During cleavage, Dsh-GFP is partitioned predominantly into vegetal blastomeres. An extensive mutational analysis of Dsh identifies several regions of the protein that are required for vegetal cortical targeting, including a phospholipid-binding motif near the N-terminus.  相似文献   

10.
It has been known for nearly a century that at the 16-cell stage of sea urchin embryos, the animal 4 cells divide equally and horizontally, whereas the vegetal 4 cells cleave unequally and practically vertically into macromeres and micromeres. Recently, more careful observations were made on the process of micromere formation and it has been revealed that a primary cause for the inequality lies in the migration of the 4 vegetal nuclei to the vegetal pole of the embryo which brings about excentricity of the mitotic apparatus. Records of this phenomenon are given in the present paper.  相似文献   

11.
Processes of gastrulation in the sea urchin embryo have been intensively studied to reveal the mechanisms involved in the invagination of a monolayered epithelium. It is widely accepted that the invagination proceeds in two steps (primary and secondary invagination) until the archenteron reaches the apical plate, and that the constituent cells of the resulting archenteron are exclusively derived from the veg2 tier of blastomeres formed at the 60-cell stage. However, recent studies have shown that the recruitment of the archenteron cells lasts as late as the late prism stage, and some descendants of veg1 blastomeres are also recruited into the archenteron. In this review, we first illustrate the current outline of sea urchin gastrulation. Second, several factors, such as cytoskeletons, cell contact and extracellular matrix, will be discussed in relation to the cellular and mechanical basis of gastrulation. Third, differences in the manner of gastrulation among sea urchin species will be described; in some species, the archenteron does not elongate stepwise but continuously. In those embryos, bottle cells are scarcely observed, and the archenteron cells are not rearranged during invagination unlike in typical sea urchins. Attention will be also paid to some other factors, such as the turgor pressure of blastocoele and the force generated by blastocoele wall. These factors, in spite of their significance, have been neglected in the analysis of sea urchin gastrulation. Lastly, we will discuss how behavior of pigment cells defines the manner of gastrulation, because pigment cells recently turned out to be the bottle cells that trigger the initial inward bending of the vegetal plate.  相似文献   

12.
In many embryos specification toward one cell fate can be diverted to a different cell fate through a reprogramming process. Understanding how that process works will reveal insights into the developmental regulatory logic that emerged from evolution. In the sea urchin embryo, cells at gastrulation were found to reprogram and replace missing cell types after surgical dissections of the embryo. Non-skeletogenic mesoderm (NSM) cells reprogrammed to replace missing skeletogenic mesoderm cells and animal caps reprogrammed to replace all endomesoderm. In both cases evidence of reprogramming onset was first observed at the early gastrula stage, even if the cells to be replaced were removed earlier in development. Once started however, the reprogramming occurred with compressed gene expression dynamics. The NSM did not require early contact with the skeletogenic cells to reprogram, but the animal cap cells gained the ability to reprogram early in gastrulation only after extended contact with the vegetal halves prior to that time. If the entire vegetal half was removed at early gastrula, the animal caps reprogrammed and replaced the vegetal half endomesoderm. If the animal caps carried morpholinos to either hox11/13b or foxA (endomesoderm specification genes), the isolated animal caps failed to reprogram. Together these data reveal that the emergence of a reprogramming capability occurs at early gastrulation in the sea urchin embryo and requires activation of early specification components of the target tissues.  相似文献   

13.
The micromeres, the first cells to be specified in sea urchin embryos, are generated by unequal cleavage at the fourth cell division. The micromeres differentiate autonomously to form spicules and dispatch signals to induce endomesoderm in the neighbouring macromeres cells in the embryo. Using a calcium indicator Fura-2/AM and a mixture of dextran conjugated Oregon green-BAPTA 488 and Rhodamine red, the intracellular calcium ion concentration ([Ca2+]i) was studied in embryos at the 16-cell stage. [Ca2+]i was characteristically elevated in the micromeres during furrowing at the 4th cleavage. Subsequently, Ca2+ oscillated for about 10 min in the micromeres, resulting in episodic high levels of [Ca2+]i. High [Ca2+]i regions were associated with regional localizations of the endoplasmic reticulum (ER), though not with ER accumulated at the vegetal pole of the micromeres during the 4th division. Pharmacological studies, using a blocker of IP3-mediated Ca2+ release (Xestospongin), a store-operated Ca2+ entry inhibitor (2 aminoethoxydiphenyl borate (2-APB)) and an inhibitor of stretch-dependent ion channels (gadolinium), suggest that the high [Ca2+]i and oscillations in the micromeres are triggered by calcium influx caused by the activation of stretch-dependent calcium channels, followed by the release of calcium ions from the endoplasmic reticulum. On the basis of these new findings, a possible mechanism for autonomous formation of the micromeres is discussed.  相似文献   

14.
At fourth cleavage of sea urchin embryos four micromeres at the vegetal pole separate from four macromeres just above them in an unequal cleavage. The micromeres have the capacity to induce a second axis if transplanted to the animal pole and the absence of micromeres at the vegetal pole results in the failure of macromere progeny to specify secondary mesenchyme cells (SMCs). This suggests that micromeres have the capacity to induce SMCs. We demonstrate that micromeres require nuclear beta-catenin to exhibit SMC induction activity. Transplantation studies show that much of the vegetal hemisphere is competent to receive the induction signal. The micromeres induce SMCs, most likely through direct contact with macromere progeny, or at most a cell diameter away. The induction is quantitative in that more SMCs are induced by four micromeres than by one. Temporal studies show that the induction signal is passed from the micromeres to macromere progeny between the eighth and tenth cleavage. If micromeres are removed from hosts at the fourth cleavage, SMC induction in hosts is rescued if they later receive transplanted micromeres between the eighth and tenth cleavage. After the tenth cleavage addition of induction-competent micromeres to micromereless embryos fails to specify SMCs. For macromere progeny to be competent to receive the micromere induction signal, beta-catenin must enter macromere nuclei. The macromere progeny receive the micromere induction signal through the Notch receptor. Signaling-competent micromeres fail to induce SMCs if macromeres express dominant-negative Notch. Expression of an activated Notch construct in macromeres rescues SMC specification in the absence of induction-competent micromeres. These data are consistent with a model whereby beta-catenin enters the nuclei of micromeres and, as a consequence, the micromeres produce an inductive ligand. Between the eighth and tenth cleavage micromeres induce SMCs through Notch. In order to be receptive to the micromere inductive signal the macromeres first must transport beta-catenin to their nuclei, and as one consequence the Notch pathway becomes competent to receive the micromere induction signal, and to transduce that signal. As Notch is maternally expressed in macromeres, additional components must be downstream of nuclear beta-catenin in macromeres for these cells to receive and transduce the micromere induction signal.  相似文献   

15.
Fourth cleavage of the sea urchin embryo produces 16 blastomeres that are the starting point for analyses of cell lineages and bilateral symmetry. We used optical sectioning, scanning electron microscopy and analytical 3-D reconstructions to obtain stereo images of patterns of karyokinesis and cell arrangements between 4th and 6th cleavage. At 4th cleavage, 8 mesomeres result from a variant, oblique cleavage of the animal quartet with the mesomeres arranged in a staggered, offset pattern and not a planar ring. This oblique, non-radial cleavage pattern and polygonal packing of cells persists in the animal hemisphere throughout the cleavage period. Contrarily, at 4th cleavage, the 4 vegetal quartet nuclei migrate toward the vegetal pole during interphase; mitosis and cytokinesis are latitudinal and subequatorial. The 4 macromeres and 4 micromeres form before the animal quartet divides to produce a 12-cell stage. Subsequently, macromeres and their derivatives divide synchronously and radially through 8th cleavage according to the Sachs-Hertwig rule. At 5th cleavage, mesomeres and macromeres divide first; then the micromeres divide latitudinally and unequally to form the small and large micromeres. This temporal sequence produces 28-and 32-cell stages. At 6th cleavage, macromere and mesomere descendants divide synchronously before the 4 large micromeres divide parasynchronously to produce 56- and 60-cell stages.  相似文献   

16.
17.
The sea urchin Heliocidaris erythrogramma undergoes direct development, bypassing the usual echinoid pluteus larva. We present an analysis of cell lineage in H. erythrogramma as part of a definition of the mechanistic basis for this evolutionary change in developmental mode. Microinjection of fluoresceinated tracer dye and surface marking with vital dye are used to follow larval fates of 2-cell, 8-cell, and 16-cell blastomeres, and to examine axial specification. The animal-vegetal axis and adult dorsoventral axis are basically unmodified in H. erythrogramma. Animal cell fates are very similar to those of typically developing species; however, vegetal cell fates in H. erythrogramma are substantially altered. Radial differences exist among vegetal blastomere fates in the 8-cell embryo: dorsal vegetal blastomeres contribute proportionately more descendants to ectodermal and fewer to mesodermal fates, while ventral vegetal blastomeres have a complementary bias in fates. In addition, vegetal cell fates are more variable than in typical developers. There are no cells in H. erythrogramma with fates comparable to those of the micromeres and macromeres of typically developing echinoids. Instead, all vegetal cells in the 16-cell embryo can contribute progeny to ectoderm and gut. Alterations have thus arisen in cleavage patterns and timing of cell lineage partitioning during the evolution of direct development in H. erythrogramma.  相似文献   

18.
Signals from micromere descendants play a crucial role in sea urchin development. In this study, we demonstrate that these micromere descendants express HpTb, a T-brain homolog of Hemicentrotus pulcherrimus. HpTb is expressed transiently from the hatched blastula stage through the mesenchyme blastula stage to the gastrula stage. By a combination of embryo microsurgery and antisense morpholino experiments, we show that HpTb is involved in the production of archenteron induction signals. However, HpTb is not involved in the production of signals responsible for the specification of secondary mesenchyme cells, the initial specification of primary mesenchyme cells, or the specification of endoderm. HpTb expression is controlled by nuclear localization of beta-catenin, suggesting that HpTb is in a downstream component of the Wnt signaling cascade. We also propose the possibility that HpTb is involved in the cascade responsible for the production of signals required for the spicule formation as well as signals from the vegetal hemisphere required for the differentiation of aboral ectoderm.  相似文献   

19.
 During the normal development of echinoids, an animal cap consisting of 8 mesomeres in a 16-cell stage embryo differentiates exclusively into ectoderm. Micromeres in an embryo at the same stage differentiate into primary mesenchyme cells (PMC) and coelomic pouch constituents. An animal cap and a quartet of micromeres were isolated from a 16-cell stage embryo and recombined to make a chimeric embryo devoid of presumptive endoderm and secondary mesenchyme cells (SMC). The PMC in the chimeric embryo were completely removed at the mesenchyme blastula stage. The PMC-depleted chimeric embryos formed an archenteron derived from the mesomeres. Some secondary mesenchyme-like cells (induced SMC) were released from the archenteron tip. A considerable fraction of the induced SMC formed the typical mesenchyme pattern after migrating into the vegetal region, synthesized skeletogenic mesenchyme cell-surface protein (msp130) and produced the larval skeleton. These findings indicate that induced SMC derived from the presumptive ectoderm have the same nature as natural SMC in both the timing of their release and their skeletogenic potential expressed in the absence of PMC. Received: 14 November 1996 / Accepted: 30 December 1996  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号