首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Available evidence suggests that Mg2+ ions are involved in reactions catalyzed by hammerhead ribozymes. However, the activity in the presence of exclusively monovalent ions led us to question whether divalent metal ions really function as catalysts when they are present. We investigated ribozyme activity in the presence of high levels of Mg2+ ions and the effects of Li+ ions in promoting ribozyme activity. We found that catalytic activity increased linearly with increasing concentrations of Mg2+ ions and did not reach a plateau value even at 1 M Mg2+ ions. Furthermore, this dependence on Mg2+ ions was observed in the presence of a high concentration of Li+ ions. These results indicate that the Mg2+ ion is a very effective cofactor but that the affinity of the ribozyme for a specific Mg2+ ion is very low. Moreover, cleavage by the ribozyme in the presence of both Li+ and Mg2+ ions was more effective than expected, suggesting the existence of a new reaction pathway—a cooperative pathway—in the presence of these multiple ions, and the possibility that a Mg2+ ion with weak affinity for the ribozyme is likely to function in structural support and/or act as a catalyst.  相似文献   

2.
D J Fu  L W McLaughlin 《Biochemistry》1992,31(45):10941-10949
Five modified hammerhead ribozyme/substrate complexes have been prepared in which individual adenosine N7-nitrogens have been excised. The modified complexes were chemically synthesized with the substitution of a single 7-deazaadenosine (c7A) base analogue for residues A11, A14, A26, A27, or A28. Two of the base analogues, c7A11 and c7A14, occur in a 19-mer ribozyme, while the remaining three residues, c7A26, c7A27, and c7A28, are present in a 24-mer substrate. Under stoichiometric conditions, four of the complexes are cleaved with relatively little change in rate when compared with that of the native complex. However, the relative rate for the c7A11 complex is some 35-fold slower than that of the native complex. Steady-state kinetic analyses indicate that the cleavage efficiencies, as measured by kcat/KM, for the c7A14, c7A26, c7A27, and c7A28 complexes are reduced 18-fold, 10-fold, 34-fold, and 16-fold, respectively. These reductions in cleavage efficiency are primarily a result of lower kcat values. By comparison, the cleavage efficiency of the c7A11 complex is reduced more than 200-fold relative to that of the native complex, again primarily as a result of a lower kcat value. The results suggest that the N7-nitrogen of A11 in the hammerhead ribozyme/substrate complex is critical for efficient cleavage activity. The results of the present work, in combination with those from previous reports, indicate that five critical functional groups are located within the tetrameric sequence G10A11U12G13. A preliminary model for the binding of a single magnesium cofactor to this portion of the sequence is proposed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effects of various metal ions on cleavage activity and global folding have been studied in the extended Schistosoma hammerhead ribozyme. Fluorescence resonance energy transfer was used to probe global folding as a function of various monovalent and divalent metal ions in this ribozyme. The divalent metals ions Ca2+, Mg2+, Mn2+, and Sr2+ have a relatively small variation (less than sixfold) in their ability to globally fold the hammerhead ribozyme, which contrasts with the very large difference (>10,000-fold) in apparent rate constants for cleavage for these divalent metal ions in single-turnover kinetic experiments. There is still a very large range (>4600-fold) in the apparent rate constants for cleavage for these divalent metal ions measured in high salt (2 M NaCl) conditions where the ribozyme is globally folded. These results demonstrate that the identity of the divalent metal ion has little effect on global folding of the Schistosoma hammerhead ribozyme, whereas it has a very large effect on the cleavage kinetics. Mechanisms by which the identity of the divalent metal ion can have such a large effect on cleavage activity in the Schistosoma hammerhead ribozyme are discussed.  相似文献   

4.
In vitro selection was used to enrich for highly efficient RNA phosphodiesterases within a size-constrained (18 nt) ribonucleotide domain. The starting population (g0) was directed in trans against an RNA oligonucleotide substrate immobilised to an avidin-magnetic phase. Four rounds of selection were conducted using 20 mM Mg2+to fractionate the population on the basis of divalent metal ion-dependent phosphodiesterase activity. The resulting generation 4 (g4) RNA was then directed through a further two rounds of selection using low concentrations of Mg2+. Generation 6 (g6) was composed of sets of active, trans cleaving minimised ribozymes, containing recognised hammerhead motifs in the conserved nucleotides, but with highly variable linker domains (loop II-L.1-L.4). Cleavage rate constants in the g6 population ranged from 0.004 to 1.3 min-1at 1 mM Mg2+(pH 8.0, 37 degrees C). Selection was further used to define conserved positions between G(10.1) and C(11.1) required for high cleavage activity at low Mg2+concentration. At 10 mM MgCl2the kinetic phenotype of these molecules was comparable to a hammerhead ribozyme with 4 bp in helix II. At low Mg2+concentration, the disparity in cleavage rate constants increases in favour of the minimised ribozymes. Favourable kinetic traits appeared to be a general property for specific selected linker sequences, as the high rates of catalysis were transferable to a different substrate system.  相似文献   

5.
J C Markley  F Godde  S T Sigurdsson 《Biochemistry》2001,40(46):13849-13856
We describe a new RNA cleavage motif, found in the hammerhead ribozyme. Cleavage occurs between nucleotides G8 and A9, yielding a free 5'-hydroxyl group and a 2',3'-cyclic phosphate. This cleavage is dependent upon divalent metal ions and is the first evidence for a metalloribozyme known to show preference for Zn(2+). Cleavage is also observed in the presence of Ni(2+), Co(2+), Mn(2+), Cd(2+), and Pb(2+), while negligible cleavage was detected in the presence of the alkaline-earth metal ions Mg(2+), Ca(2+), Sr(2+), and Ba(2+). A linear relationship between the logarithm of the rate and pH was observed for the Zn(2+)-dependent cleavage, which is indicative of proton loss in the cleavage mechanism, either prior to or in the rate-determining step. We postulate that a zinc hydroxide complex, bound to the known A9/G10.1 metal ion binding site, abstracts the proton from the 2'-hydroxyl group of G8, which attacks the A9 phosphate and initiates cleavage. This hypothesis is supported by a previously reported crystal structure [Murray, J. B., Terwey, D. P., Maloney, L., Karpeisky, A., Usman, N., Beigelman, L., and Scott, W. G. (1998) Cell 92, 665-673], which shows the conformation required for RNA cleavage and proximity of the 2'-hydroxyl group to the metal ion complex.  相似文献   

6.
A series of 2 stranded hammerhead ribozymes has been synthesized in which single conserved adenosine residues have been replaced by nebularine or single guanosine residues by inosine. Comparison of the rates of trans-cleavage for the modified structures suggests the presence of interstrand non-Watson-Crick hydrogen bonding interactions including a GA:AG double mismatch. The exocyclic amino group of one of the guanosine residues is essential for cleavage.  相似文献   

7.
The conventional hammerhead ribozyme cleaves RNA 3' to nucleotide triplets with the general formula NUH, where N is any nucleotide, U is uridine and H is any nucleotide except guanosine. In order to isolate hammerhead ribozyme sequences capable of cleaving 3' to the GUG triplet, we performed a mutagenic selection protocol starting with the conventional sequence of an NUH-cleaving ribozyme. The 22 nucleotides in the core and the stem-loop II region were subjected to mutagenic PCR using the two nucleotide analogues 6-(2-deoxy-beta-d-ribofuranosyl)-3,4-dihydro-8H-pyrimido-[4,5-C)][1, 2] oxazin-7-one and of 8-oxo-2'-deoxyguanosine. After five repetitions of the selection cycle, several clones showed cleavage activity. One sequence, having one deletion, showed at least a 90 times higher in trans cleavage rate than the starting ribozyme. It cleaved 3' to GUG and GUA. The sequence of this ribozyme is essentially identical with that obtained previously by selection for AUG cleavage starting with a randomised core and stem-loop II region. This identical result of two independent selection procedures supports the notion that sequences for NUR cleavage, where R is a purine nucleotide, are not compatible with the classical hammerhead structure, and that the sequence space for this cleavage specificity is very limited. The cleavage of NUR triplets is not restricted to the sequence of the substrate that was used for selection but is sequence-independent for in trans cleavage, although the sequence context influences the value for the cleavage rate somewhat. Analysis of cleavage activities indicates the importance of A at position L2.5 in loop II.  相似文献   

8.
S Bevers  S B Ha  L W McLaughlin 《Biochemistry》1999,38(24):7710-7718
Three modified hammerhead ribozyme/substrate complexes have been prepared in which individual uridine O2-carbonyls have been eliminated. The modified complexes were chemically synthesized with the substitution of a single 2-pyridone (2P) base analogue for residues U4, U7, and U16.1. Steady-state kinetic analyses indicate that the cleavage efficiencies for the U7 and U16.1 complexes were not significantly reduced relative to the native complex as measured by kcat/KM. The cleavage efficiency for the 2P4 complex, with the analogue present within the uridine loop, was reduced by greater than 2 orders of magnitude. This significant reduction in catalytic efficiency was due primarily to a decrease in kcat. The pH vs cleavage rate profile suggests that the O2-carbonyl of the U4 residue of the hammerhead complex is critical for transition state stabilization and efficient cleavage activity. The results of a Mg2+ rescue assay do not implicate the O2-carbonyl of U4 in an interaction with a divalent metal ion. In addition, the results of a ribozyme folding assay suggest that the presence of the 2P4 within the uridine loop does not alter the folding pathway (relative to the native sequence) both in the absence and in the presence of Mg2+. The O2-carbonyl of U4 appears oriented toward the interior of the catalytic pocket where it may be involved in a critical hydrogen bonding interaction necessary for transition state stabilization.  相似文献   

9.
The activity of a hammerhead ribozyme (Rz) in vivo depends on several factors, such as abundance, stability, and accessibility of Rz to its target mRNA. Among these factors, accessibility is believed to be the rate-limiting factor for Rz-mediated cleavage in vivo. As Rz and its substrate RNA are negatively charged, we examined whether cellular RNA-interacting proteins or artificial polycations might improve the accessibility of Rz to its substrate RNA. Specifically, we examined the effects of two kinds of cationic comb-type copolymer, alphaPLL-g-Dex, and a cellular RNA helicase on the accessibility of Rz to a model structured RNA in vitro. The cleavage activity of Rz was slightly enhanced by alphaPLL-g-Dex, probably due to an acceleration of the association/dissociation rate. And also, the RNA helicase-bound hybrid-Rz could cleave the target substrate at a significantly higher rate due to its unwinding activity for the duplex RNA substrate. These approaches should be useful in the development of efficient gene-inactivating reagents in the post-genomic era.  相似文献   

10.
11.
In the presence of magnesium ions, cleavage by the hammerhead ribozyme RNA at a specific residue leads to 2'3'-cyclic phosphate and 5'-OH extremities. In the cleavage reaction an activated ribose 2'-hydroxyl group attacks its attached 3'-phosphate. Molecular dynamics simulations of the crystal structure of the hammerhead ribozyme, obtained after flash-freezing of crystals under conditions where the ribozyme is active, provide evidence that a mu-bridging OH-ion is located between two Mg2+ions close to the cleavable phosphate. Constrained simulations show further that a flip from the C3'- endo to the C2'- endo conformation of the ribose at the cleavable phosphate brings the 2'-hydroxyl in proximity to both the attacked phosphorous atom and the mu-bridging OH-ion. Thus, the simulations lead to a detailed new insight into the mechanism of hammerhead ribozyme cleavage where a mu-hydroxo bridged magnesium cluster, located on the deep groove side, provides an OH-ion that is able to activate the 2'-hydroxyl nucleophile after a minor and localized conformational change in the RNA.  相似文献   

12.
We have characterized a novel Zn2+-catalyzed cleavage site between nucleotides C3 and U4 in the catalytic core of the hammerhead ribozyme. In contrast to previously described divalent metal-ion-dependent cleavage of RNA, U4 cleavage is only observed in the presence of Zn2+. This new cleavage site has an unusual pH dependence, in that U4 cleavage products are only observed above pH 7.9 and reach a maximum yield at about pH 8.5. These data, together with the fact that no metal ion-binding site is observed in proximity to the U4 cleavage site in either of the crystal structures, point toward a pH-dependent conformational change in the hammerhead ribozyme. We have described previously Zn2+-dependent cleavage between G8 and A9 in the hammerhead ribozyme and have discovered that U4 cleavage occurs only after A9 cleavage. To our knowledge, this is the first example of sequential cleavage events as a possible regulatory mechanism in ribozymes.  相似文献   

13.
The efficacy of intracellular binding of hammerhead ribozyme to its cleavage site in target RNA is a major requirement for its use as a therapeutic agent. Such efficacy can be influenced by several factors, such as the length of the ribozyme antisense arms and mRNA secondary structures. Analysis of various IL-2 hammerhead ribozymes having different antisense arms but directed to the same site predicts that the hammerhead ribozyme target site is present within a double-stranded region that is flanked by single-stranded loops. Extension of the low cleaving hammerhead ribozyme antisense arms by nucleotides that base pair with the single-stranded regions facilitated the hammerhead ribozyme binding to longer RNA substrates (e.g. mRNA). In addition, a correlation between the in vitro and intracellular results was also found. Thus, the present study would facilitate the design of hammerhead ribozymes directed against higher order structured sites. Further, it emphasises the importance of detailed structural investigations of hammerhead ribozyme full-length target RNAs.  相似文献   

14.
The use of deoxyribonucleotide substitution in RNA (mixed RNA/DNA polymers) permits an evaluation of the role of 2'-hydroxyl groups in ribozyme catalysis. Specific deoxyribonucleotide substitution at G9 and A13 of the ribozyme decreases the catalytic activity (kcat) of the ribozyme by factors of 14 and 20, respectively. The reduction of the reaction rate concomitant with the absence of these 2'-OHs or the 2'-OH of the substrate U7 position can be partially compensated by increasing the Mg2+ concentration above 10 mM. The KMg of the all-RNA ribozyme is 5.3 mM, and the lack of either of the three influential 2'-OHs increases this value by a factor of approximately 3. These and other reaction constants for the ribozyme and the deoxy-substituted analogues have been determined by assuming a three-step mechanism. The data presented here provide the basis for the formulation of a molecular model of ribozyme activity.  相似文献   

15.
Hammerhead ribozymes were transcribed from a dsDNA template containing four random nucleotides between stems II and III, which replace the naturally occurring GAA nucleotides. In vitro selection was used to select hammerhead ribozymes capable of in cis cleavage using denaturing polyacrylamide gels for the isolation of cleaving sequences. Self-cleaving ribozymes were cloned after the first and second rounds of selection, sequenced and characterised. Only sequences containing 5'-HGAA-3', where H is A, C or U, between stems II and III were active; G was clearly not tolerated at this position. Thus, only three sequences out of the starting pool of 256 (4(4)) were active. The Michaelis-Menten parameters were determined for the in trans cleaving versions of these ribozymes and indicate that selected ribozymes are less efficient than the native sequence. We propose that the selected ribozymes accommodate the extra nucleotide as a bulge in stem II.  相似文献   

16.
Combinations of the polyamine spermine and magnesium ions synergize to dramatically enhance cleavage of the hairpin ribozyme. Certain synthetic basic tripeptides stimulate hairpin cleavage significantly at limiting magnesium ion concentration, notably the tripeptide of L-diaminobutyric acid (Dab). Of a range of novel synthetic spermine-amino acid conjugates, L-Dab-spermine (but not D-Dab nor other amino acid conjugates) was more effective than spermine itself.  相似文献   

17.
By employing classical molecular dynamics, correlation analysis of coupling between slow and fast dynamical modes, and free energy (umbrella) sampling using classical as well as mixed quantum mechanics molecular mechanics force fields, we uncover a possible pathway for phosphoryl transfer in the self-cleaving reaction of the minimal hammerhead ribozyme. The significance of this pathway is that it initiates from the minimal hammerhead crystal structure and describes the reaction landscape as a conformational rearrangement followed by a covalent transformation. The delineated mechanism is catalyzed by two metal (Mg(2+)) ions, proceeds via an in-line-attack by CYT 17 O2' on the scissile phosphorous (ADE 1.1 P), and is therefore consistent with the experimentally observed inversion configuration. According to the delineated mechanism, the coupling between slow modes involving the hammerhead backbone with fast modes in the cleavage site appears to be crucial for setting up the in-line nucleophilic attack.  相似文献   

18.
A ligase ribozyme accelerating a ligation reaction with oligonucleotide under a low-pH condition was selected by in vitro adaptation. A ribozyme active at pH 7 was randomly mutated, and the resultant RNA library was subjected to in vitro adaptation under a low-pH reaction condition. At pH 4, the adapted RNAs reacted with the oligonucleotide substrates about 200 times faster than the original ribozyme. When the ribozyme was cloned and sequenced, 10 of the 30 clones sequenced had identical sequences. The differences in sequence from the original ribozyme were found at four positions in the middle region and at the 3' end. A few sequential differences dominated the activity of the ribozyme under the extreme condition. The adapted ribozyme had one repeating sequence that was critical for the activity.  相似文献   

19.
Proton nuclear magnetic resonance (n.m.r.) experiments were used to probe base-pair formation in several hammerhead RNA enzyme (ribozyme) domains. The hammerhead domains consist of a 34 nucleotide ribozyme bound to a complementary 13 nucleotide non-cleavable DNA substrate. Three hammerhead domains were studied that differ in the sequence and stability of one of the helices involved in recognition of the substrate by the ribozyme. The n.m.r. data show a 1:1 stoichiometry for the ribozyme-substrate complexes. The imino proton resonances in the hammerhead complexes were assigned by two-dimensional nuclear Overhauser effect experiments. These data confirm the presence of two of the three helical regions in the hammerhead domain, predicted from phylogenetic data; and are also consistent with the formation of the third helix. Since a divalent cation is required for efficient catalytic activity of the hammerhead domain, the magnesium ion dependence of the n.m.r. spectra was studied for two of the hammerhead complexes. One of the complexes showed very large spectral changes upon addition of magnesium ions. However, the complex that has the most C.G base-pairs in one of the recognition helices shows essentially no spectral (and therefore presumably structural) changes upon addition of magnesium. These data are consistent with a model where the magnesium binding site already exists in the magnesium-free complex, suggesting that the magnesium ion serves primarily a catalytic, and not a structural, role under the conditions used here.  相似文献   

20.
The synthesis is described of oligoribonucleotides containing the modified nucleoside O6-methylguanosine. Solid-phase oligoribonucleotide assembly was carried out by use of 2'-silyl-protected nucleoside phosphoramidites, a new O6-methylguanosine-containing synthon and a mild deprotection method. The O6-methylguanosine-modified oligonucleotides were used in the study of the role of conserved residues G5, G8 and G12 in hammerhead ribozyme cleavage. Hammerheads thus substituted at any of these positions showed an approximately 75-fold reduction in kcat whereas Km was unaffected. Hammerheads with modifications at G5 or G8 showed a significant reduction in magnesium binding affinity whereas modification at G12 had no effect. The results show that the three conserved G residues play crucial but different role sin hammerhead cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号