首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas aeruginosa GRC1 exhibited strong antagonistic activity against Sclerotinia sclerotiorum, in vitro and in vivo. Scanning electron microscopic (SEM) studies showed morphological abnormalities such as perforation, lysis and fragmentation of hyphae of S. sclerotiorum caused by P. aeruginosa GRC1. This strain produced extracellular chitinase enzyme, the role of which was clearly demonstrated through Tn5 mutagenesis. Bacterization of peanut seeds with GRC1 resulted in increased seed germination and reduced stem-rot of peanut in S. sclerotiorum-infested soil by 97%. Other vegetative and yield plant parameters such as nodules per plant, pods and grain yield per plant were enhanced with a statistical significance in comparison to control. Neomycin resistant (GRC1neo+) bacterium was a good root colonizer and frequently isolated from rhizosphere of peanut plants. These findings showed P. aeruginosa GRC1 as a potential biocontrol agent against S. sclerotiorum.  相似文献   

2.
Two plant growth promoting rhizobacteria––Sinorhizobium meliloti RMP1 and Pseudomonas aeruginosa GRC2 were studied for integrated nutrient management to obtain improved yield of Brassica juncea. Low concentrations of urea and diammonium phosphate (DAP) stimulated the growth of both S. meliloti RMP1 and P. aeruginosa GRC2. 1 M of urea and 0.35 M of DAP was found lethal for RMP1, while 1.3 M and 0.37 M concentrations of urea and DAP proved to be toxic for GRC2. Lc50 was observed as 0.49 M of urea and 0.15 M of DAP for RMP1, and 0.66 M urea and 0.18 M of DAP for GRC2. Urea and DAP adaptive variants of RMP1 and GRC2 was isolated. Adaptive bacterial variants had better growth rates at sub-lethal (Lc50) concentrations of urea and DAP as compared to non-adaptive variants. They also retained plant growth promoting attributes similar to non adaptive variants. GRC2 and RMP1 did not affect the growth of each other and were chemotactically active for DAP, urea as well as root exudates of B. juncea. Both the isolates colonized well in the rhizosphere of B. juncea, as their populations were recorded ≈5 log10 cfu g−1 after 120 days. Interestingly, the colonization ability was found even better when both strains were co-inoculated, as their population was recorded in the range of ≈6 log10 cfu g−1 after 120 days. In field trials, application of RMP1 and GRC2 resulted in significant increase in biomass and yield of B. juncea as compared to control. However, yield was better with application of half dose and full dose of recommended fertilizers. Interestingly, the biomass as well as yield improved further when both isolates were applied together along with half dose of recommended fertilizers.  相似文献   

3.
Clinical isolates of Yersinia enterocolitca, which belong to mouse-lethal serotypes, produce the siderophore yersiniophore. Siderophore production was shown to be iron regulated and to reach maximum production in late log phase. Yersiniophore is a fluorescent siderophore with maximum excitation at 270 nm and a major emission peak at 428 nm. Absorption maxima were seen at 210 and 250 nm with a low broad peak from 280 to 320 nm. Purification of unchelated yersiniophore for structural analysis was made difficult by low yields (1–2 mg mg-1), and susceptibility to acid hydrolysis, oxidation and possibly polymerization. Yersinophore was therefore purified as an Al3+ chelate, which was found to be stable in solution for several weeks. To purify Al3+-yersiniophore, unchelated yersiniophore was first extracted from culture supernatants with dichloromethane, concentrated by rotary evaporation and adsorbed to a DEAE-sephacel column. Al3+-yersiniophore was eluted with 0.01 m AlCl3 and further purified by HPLC. The structure was established by a combination of elemental analysis, high resolution mass spectrometry and two-dimensional NMR experiments. Yersiniophore is a phenolate-thiazole siderophore with the formula C21H24N3O4S3Al and a molecular weight of 505.07404 when chelated to Al3+. The structure of yersiniophore was determined to be closely related to the structures of pyochelin, produced by Pseudomonas aeruginosa, and anguibactin, produced by Vibrio anguillarum.  相似文献   

4.
The P. aeruginosa-related plant growth beneficial strain 7NSK2 was able to increase the yield of barley, wheat, 4 varieties of maize, cucumber, spinach and corn salad from 10 to 24%. Siderophore deficient mutants of 7NSK2, obtained by Tn5-mutagenesis were never able to stimulate plant growth, although their root colonizing capacities were not impaired. The effect of 7NSK2 inoculation on cucumber dry weight was more pronounced in EDDHA-treated soil (+18%) than in the control soil (+10%). Soil inoculation with 7NSK2 in a FeEDDHA-treated soil had no effect on plant growth.The 7NSK2 strain and a sid- mutant MPFM1 could make use of a variety of Fe(III) siderophore complexes, while the pyoverdin produced by 7NSK2 was only used by a limited number of other fluorescent Pseudomonas strains. Many more root than soil bacteria were able to use Fe-desferal or Fe-pyoverdin to overcome iron-shortage. It is postulated that pyoverdin production plays an important role in plant growth stimulation, but is not the only factor involved. Pyoverdin production might be very strategic, especially in the rhizosphere, not only to supply the cell with iron, but also to keep other microorganisms, which might be harmful to 7NSK2 and to the plant, at bay.  相似文献   

5.
A pot experiment was conducted in the green house to investigate the establishment of phosphate solubilizing strains of Azotobacter chroococcum, including soil isolates and their mutants, in the rhizosphere and their effect on growth parameters and root biomass of three genetically divergent wheat cultivars (Triticum aestivum L.). Five fertilizer treatments were performed: Control, 90 kg N ha—1, 90 kg N + 60 kg P2O5 ha—1, 120 kg N ha—1 and 120 kg N + 60 kg P2O5 ha—1. Phosphate solubilizing and phytohormone producing parent soil isolates and mutant strains of A. chroococcum were isolated and selected by an enrichment method. In vitro phosphate solubilization and growth hormone production by mutant strains was increased compared with soil isolates. Seed inoculation of wheat varieties with P solubilizing and phytohormone producing A. chroococcum showed better response compared with controls. Mutant strains of A. chroococcum showed higher increase in grain (12.6%) and straw (11.4%) yield over control and their survival (12—14%) in the rhizosphere as compared to their parent soil isolate (P4). Mutant strain M37 performed better in all three varieties in terms of increase in grain yield (14.0%) and root biomass (11.4%) over control.  相似文献   

6.
The isolate RNP4 obtained from a long-term tannery waste contaminated soil was characterized and presumptively identified as Pseudomonas sp. The strain RNP4 tolerated concentrations up to 450 mg Cr6+/L on a Luria-Bartani (LB) agar medium and reduced a substantial amount of Cr6+ to Cr3+ in the LB liquid medium. The ability of performing multifarious activities in tandem suggested the uniqueness of isolate RNP4. The strain produced a substantial amount of indole acetic acid (IAA) in tryptophan-supplemented medium. The strain also exhibited the production of siderophore and solubilization of phosphorus in mineral salt medium and SRS1 medium, respectively. Concurrent production of IAA and siderophore and the solubilization of phosphorus revealed its plant growth promotion potential. Furthermore, the strain was able to promote the growth of black gram, Indian mustard, and pearl millet in the presence of Cr6+. Thus, the innate capability of this novel isolate for parallel bioremediation and plant growth promotion has significance in the management of environmental and agricultural problems.  相似文献   

7.
Minaxi  Jyoti Saxena 《Mycopathologia》2010,170(3):181-193
Molecular characterization of rhizobacterial isolate RM-3, based on sequencing of a partial 1,313-bp fragment of 16S rDNA amplicon, validated the strain as Pseudomonas aeruginosa. The strain showed significant growth inhibition of different phytopathogenic fungi in dual plate and liquid culture assays. Maximum growth inhibition was found in case of Macrophomina phaseolina in plate assay (68%), whereas it was 93% in Dreschlera graminae in dual liquid assay. Microscopic studies (light and scanning electron) showed morphological abnormalities such as perforation, fragmentation, swelling, shriveling and lysis of hyphae of pathogenic fungi. The strain also exhibited production of siderophore and hydrogen cyanide (HCN) on chrome azurol S and King’s B media, respectively. Besides, this strain also produced extracellular chitinase enzyme and an important antibiotic, phenazine. Seed bacterization with RM-3 showed a significant (P < 0.05) increase in seed germination, shoot length, shoot fresh and dry weight, root length, root fresh and dry weight and leaf area. It was also able to colonize the rhizosphere of plants and reduced percent disease incidence in M. phaseolina-infested soil by 83%. Yield parameters such as pods, number of seeds and grain yield per plant also enhanced significantly (P < 0.05) in comparison to control. Thus, the secondary metabolites producing Pseudomonas aeruginosa strain RM-3 exhibited innate potential of plant growth promotion and biocontrol potential in vitro and in vivo.  相似文献   

8.
The production of indole-3-acetic acid (IAA), by rhizobacteria, has been associated with plant growth promotion, especially root initiation and elongation. Isolate TO3 selected from 103 fluorescent pseudomonads, identified as Pseudomonas aeruginosa, showed maximum production of IAA. Isolate TO3 having biocontrol activity against Macrophomina phaseolina also showed production of siderophore and HCN was used to screen the role of bacterial IAA in reducing the level of charcoal rot disease occurrence in chickpea. Four IAA defective stable mutants of isolate TO3 having biocontrol activity against M. phaseolina were developed through 5-bromouracil mutagenesis. Mutant TO52 showed 76.47% reduction in production of IAA. Standard IAA was used in similar concentration as present in cell-free culture supernatant of wild isolate TO3 and its mutant TO52. The in vitro and in vivo study showed that IAA-defective mutant TO52 caused reduced biocontrol and plant growth promotory activity than wild isolate TO3. Standard IAA showed comparable biocontrol activity to the culture supernatant. To some extent better biocontrol and growth promotory activity in supernatant than standard IAA indicates the synergistic role of siderophore and HCN. The study clearly reports the role of bacterial IAA in suppression of charcoal rot disease of chickpea.  相似文献   

9.
This study focuses on the isolation and characterization of a high cadmium (Cd)-resistant bacterial strain, and possible exploitation of its Cd-accumulation and Cd-induced siderophore production property to improve plant growth in cadmium-contaminated soil through root colonization. The bacterial strain could tolerate up to 8 mM of Cd and could accumulate Cd intracellularly. The strain showed Cd-induced siderophore production maximally at 1.75 mM of Cd concentration under culture condition. It stimulated the growth of mustard and pumpkin plants in Cd-added soil through its establishment in rhizosphere. Through biochemical characterization and 16S rDNA sequence analysis, the strain KUCd1, as the name given to it, was identified as a strain of Pseudomonas aeruginosa.  相似文献   

10.
In this study, bacteria were isolated from the rhizosphere and inside the roots and nodules of berseem clover plants grown in the field in Iran. Two hundred isolates were obtained from the rhizosphere (120 isolates), interior roots (57 isolates), and nodules (23 isolates) of clover plants grown in rotation with rice plants. Production of chitinase, pectinase, cellulase, siderophore, salicylic acid, hydrogen cyanide, indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, solubilization of phosphate, antifungal activity against various rice plant pathogen fungi, N2 fixation, and colonization assay on rice seedlings by these strains was evaluated and compared (endophytic isolates vs. rhizosphere bacteria). The results showed both the number and the ability of plant growth-promoting (PGP) traits were different between endophytic and rhizosphere isolates. A higher percentage of endophytic isolates were positive for production of IAA, ACC deaminase, and siderophore than rhizosphere isolates. Therefore, it is suggested that clover plant may shape its own associated microbial community and act as filters for endophyte communities, and rhizosphere isolates with different (PGP) traits. We also studied the PGP effect of the most promising endophytic and rhizosphere isolates on rice seedlings. A significant relationship among IAA and ACC deaminase production, the size of root colonization, and plant growth (root elongation) in comparison with siderophore production and phosphate solubilization for the isolates was observed. The best bacterial isolates (one endophytic isolate and one rhizosphere isolate), based on their ability to promote rice growth and colonize rice roots, were identified. Based on 16S rDNA sequence analysis, the endophytic isolate CEN7 and the rhizosphere isolate CEN8 were closely related to Pseudomonas putida and Pseudomonas fluorescens, respectively. It seems that PGP trait production (such as IAA, ACC deaminase) may be required for endophytic and rhizosphere competence as compared to other PGP traits in rice seedlings under constant flooded conditions. The study also shows that the presence of diverse rhizobacteria with effective growth-promoting traits associated with clover plants may be used for sustainable crop management under field conditions.  相似文献   

11.
Summary A microplot field experiment was conducted in the presence or absence of P and N application to evaluate the influence of the seed inoculation of mustard (cv. Baruna T59) withAzospirillum lipoferum on N2-fixation in rhizosphere, association of the bacteria with the roots and grain yield and N uptake. Inoculation significantly increased the N content in rhizosphere soil particularly at early stage (40 days) of plant growth, which was accompanied by the increased association of the bacteria (A. lipoferum) in rhizosphere soil, root surface washing and surface-sterilized macerated root. A significant increase in grain yield and N uptake was also observed due to inoculation. Application of P particularly at the 20 kg. ha–1 level further enhanced the beneficial effect ofAzospirillum lipoferum inoculation, while N addition markedly reduced such an effect.  相似文献   

12.
We report the production of two types of siderophores namely catecholate and hydroxamate in modified succinic acid medium (SM) from Alcaligenes faecalis. Two fractions of siderophores were purified on amberlite XAD, major fraction was hydroxamate type having a λmax at 224 nm and minor fraction appeared as catecholate with a λmax of 264 nm. The recovery yield obtained from major and minor fractions was 297 and 50 mg ml−1 respectively. The IEF pattern of XAD-4 purified siderophore suggested the pI value of 6.5. Cross feeding studies revealed that A. faecalis accepts heterologous as well as self (hydroxamate) siderophore in both free and iron complexed forms however; the rate of siderophore uptake was more in case of siderophores complexed to iron. Siderophore iron uptake studies indicated the differences between hydroxamate siderophore of A. faecalis and Alc E, a siderophore of Alcaligenes eutrophus.  相似文献   

13.
Aims: To characterize bacteria associated with Zn/Cd‐accumulating Salix caprea regarding their potential to support heavy metal phytoextraction. Methods and Results: Three different media allowed the isolation of 44 rhizosphere strains and 44 endophytes, resistant to Zn/Cd and mostly affiliated with Proteobacteria, Actinobacteria and Bacteroidetes/Chlorobi. 1‐Aminocyclopropane‐1‐carboxylic acid deaminase (ACCD), indole acetic acid and siderophore production were detected in 41, 23 and 50% of the rhizosphere isolates and in 9, 55 and 2% of the endophytes, respectively. Fifteen rhizosphere bacteria and five endophytes were further tested for the production of metal‐mobilizing metabolites by extracting contaminated soil with filtrates from liquid cultures. Four Actinobacteria mobilized Zn and/or Cd. The other strains immobilized Cd or both metals. An ACCD‐ and siderophore‐producing, Zn/Cd‐immobilizing rhizosphere isolate (Burkholderia sp.) and a Zn/Cd‐mobilizing Actinobacterium endophyte were inoculated onto S. caprea. The rhizosphere isolate reduced metal uptake in roots, whereas the endophyte enhanced metal accumulation in leaves. Plant growth was not promoted. Conclusions: Metal mobilization experiments predicted bacterial effects on S. caprea more reliably than standard tests for plant growth‐promoting activities. Significance and Impact of the Study: Bacteria, particularly Actinobacteria, associated with heavy metal‐accumulating Salix have the potential to increase metal uptake, which can be predicted by mobilization experiments and may be applicable in phytoremediation.  相似文献   

14.
Abstract

Bacterium Pseudomonas spp. olive green (OG) was isolated from marine water, yet, it was characterized as plant growth promoting bacterium (PGPB). Multiple plant growth promoting traits of OG isolate were determined in vitro. It was tested positive for Indole-3-acetic acid (IAA) production with 29 µg ml?1 of IAA yield, phosphate solubilization with 34 µg ml?1 solubilization of Tri-calcium-phosphate and it showed maximum of 32 µg ml?1 of ammonia production. OG isolate was affirming siderophore production, hydrocyanic acid (HCN) production and catalase production. 16S rRNA gene sequence comparison was used to identify the isolate which showed its closest neighbor to be Pseudomonas fluoroscens strain BCPBMS-1. Efficacy of this PGPB was tested on the seedling growth of two test plants chickpea and green gram. Both the test plants treated with OG-based talc bioformulation showed significant growth promotion. Chickpea showed enhanced overall fresh biomass by 24%, overall dry biomass by 27% was observed after 15 days of seeded in pots. Green gram showed enhanced overall dry biomass by 28% was observed after 10 days of seeded in pots.  相似文献   

15.
Fifty fluorescent pseudomonads were isolated from rhizospheric soil of green gram from nearby area of Kaziranga, Assam, India and assayed for their extracellular proteinase production. Out of these isolates, 20 were found to be prominent in proteinase production. Genetic diversity of the 20 isolates were analyzed through BOX-PCR fingerprinting and 16S rDNA-RFLP along with three reference strains, viz., Pseudomonas fluorescens (NCIM2099T), Pseudomonas aureofaciens (NCIM2026T), and Pseudomonas aeruginosa (MTCC2582T). BOX-PCR produced two distinct clusters at 56% similarity coefficient and seven distinct BOX profiles. 16S rDNA-RFLP with three tetra-cutters restriction enzymes (HaeIII, AluI, and MspI) revealed two major clusters A and B; cluster A contained only single isolate FPS9 while the rest of 22 isolates belonged to the cluster B. Based on phenotypic characters and 16S rDNA sequence similarity, all the eight highly proteinase-producing strains were affiliated with P. aeruginosa. The proteinase was extracted from two most prominent strains (KFP1 and KFP2), purified by a three-step process involving (NH4)2SO4 precipitation, gel filtration, and ion exchange chromatography. The enzyme had an optimal pH of 8.0 and exhibit highest activity at 60°C and 37°C by KFP1 and KFP2 respectively. The specific activities were recorded as 75,050 (for KFP1) and 81,320 U/mg (for KFP2). The purified enzyme was migrated as a single band on native and SDS-PAGE with a molecular mass of 32 kDa. Zn2+, Cu2+, and Ni2+ ion inhibited the enzyme activity. Enzyme activity was also inhibited by EDTA established as their metallo-proteinase nature.  相似文献   

16.
A phosphate-solubilizing bacterial strain BIHB 723 isolated from the rhizosphere of Hippophae rhamnoides was identified as Acinetobacter rhizosphaerae on the basis of phenotypic characteristics, carbon source utilization pattern, fatty acid methyl esters analysis, and 16S rRNA gene sequence. The strain exhibited the plant growth-promoting attributes of inorganic and organic phosphate solubilization, auxin production, 1-aminocyclopropane-1-carboxylate deaminase activity, ammonia generation, and siderophore production. A significant increase in the growth of pea, chickpea, maize, and barley was recorded for inoculations under controlled conditions. Field testing with the pea also showed a significant increment in plant growth and yield. The rifampicin mutant of the bacterial strain effectively colonized the pea rhizosphere without adversely affecting the resident microbial populations.  相似文献   

17.
A total of 48 fungi were characterised for their antagonistic potential against Botrytis cinerea causing Botrytis Gray Mold (BGM) disease in chickpea by dual culture and metabolite production assays. The culture filtrate of the most promising isolate, VFI-51, was purified by various chromatographic techniques and identified as ‘citrinin’ by nuclear magnetic resonance and mass spectrometry studies. The efficacy of citrinin was demonstrated to control BGM in chickpea under greenhouse conditions. The sequences of 18S rDNA gene of the VFI-51 matched with Penicillium citrinum in BLAST analysis. The VFI-51 produced siderophore, hydrocyanic acid, indole-3-acetic acid, lipase, protease and β-1,3-glucanase; grew well in NaCl (up to 15%), at pH between 7 and 11 and temperatures between 20°C and 40°C; and was compatible with fungicides bavistin and thiram. Under greenhouse and field conditions, VFI-51 significantly enhanced the nodule number, nodule weight, root and shoot weight and stover and grain yield over the un-inoculated control. In the rhizosphere, VFI-51 also significantly enhanced total N, available P and OC over the un-inoculated control. Scanning electron microscopy analysis revealed that VFI-51 colonised on the roots of chickpea. This study concluded that VFI-51 has the potential for biocontrol of BGM and plant growth promotion in chickpea.  相似文献   

18.
The synthetically produced fluorescent siderophore NBD-desferrioxamine B (NBD-DFO), an analog of the natural siderophore ferrioxamine B, was used to study iron uptake by plants. Short-term (10-hour) 55Fe uptake rates by cotton (Gossypium spp.) and maize (Zea mays L.) plants from the modified siderophore were similar to those of the natural one. In longer-term uptake experiments (3 weeks), both siderophore treatments resulted in similar leaf chlorophyll concentration and dry matter yield. These results suggest that the synthetic derivative acts similarly to the natural siderophore. The NBD-DFO is fluorescent only when unferrated and can thus be used as a probe to follow iron removal from the siderophore. Monitoring of the fluorescence increase in a nutrient solution containing Fe3+-NBD-DFO showed that iron uptake by plants occurs at the cell membrane. The rate of iron uptake was significantly lower in both plant species in the presence of antibiotic agent, thus providing evidence for iron uptake by rhizosphere microbes that otherwise could have been attributed to plant uptake. Confocal fluorescence microscopy revealed that iron was taken up from the complex by cotton plants, and to a much lesser extent by maize plants. The active cotton root sites were located at the main and lateral root tips. Significant variations in the location and the intensity of the uptake were noticed under nonaxenic conditions, which suggested that rhizosphere microorganisms play an important role in NBD-DFO-mediated iron uptake.  相似文献   

19.
Withania somnifera (L.) Dunal, also known Indian ginseng is one of the most widespread tranquillizers tranquillisers used for the treatment of nervous disorders, intestinal infection, leprosy, and cancer; it also suffers a leaf blight disease caused by the fungus Alternaria dianthicola in various districts of South Bengal, India: Pseudomonas aeruginosa strain WS-1 isolated from the rhizosphere, showed both in vitro and in vivo antagonistic activity against the pathogen. The antifungal activity of the isolate has been found to be linked to theproduction of a siderophore, volatile substances (hydrocyanic acid), proteases and chitinases. Foliar application of a talc talc-based formulation of P. aeruginosa strain WS-1 to field grown W. somnifera reduced disease severity by 80% compared to non-treated control.  相似文献   

20.
Inulinase production by Penicillium sp. NFCC 2768 isolated from the rhizosphere soil of dahlia was studied on media containing inulin-rich plant extracts. The maximum inulinase activity (64.54 nkat/ml) was observed with the tuber extract of dahlia (Dahlia pinnata). The fungus produced substantial inulinase activity on asparagus root powder (45.23 nkat/ml) and garlic extracts (41.32 nkat/ml). The apparent molecular weight of the purified inulinase was 68 kDa. The optimum pH and temperature for enzyme activity were 5.0 and 50°C, respectively. Mn2+ and Ca2+ were found to enhance the inulinase activity, while Hg2+ was found to be a strong inhibitor. Inulinase liberated fructose, glucose, sucrose, kestose (GF2), nystose (GF3), and inulooligosaccharides (IOS). This study suggested the use of dahlia tuber extract and asparagus root powder as suitable substrates for inulinase production by the newly isolated Penicillium sp. NFCC 2768, and its application in the generation of fructose and IOS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号