首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Stathmin is a phosphorylation-regulated tubulin-binding protein. In vitro and in vivo studies using nonphosphorylatable and pseudophosphorylated mutants of stathmin have questioned the view that stathmin might act only as a tubulin-sequestering factor. Stathmin was proposed to effectively regulate microtubule dynamic instability by increasing the frequency of catastrophe (the transition from steady growth to rapid depolymerization), without interacting with tubulin. We have used a noninvasive method to measure the equilibrium dissociation constants of the T(2)S complexes of tubulin with stathmin, pseudophosphorylated (4E)-stathmin, and diphosphostathmin. At both pH 6.8 and pH 7.4, the relative sequestering efficiency of the different stathmin variants depends on the concentration of free tubulin, i.e. on the dynamic state of microtubules. This control is exerted in a narrow range of tubulin concentration due to the highly cooperative binding of tubulin to stathmin. Changes in pH affect the stability of tubulin-stathmin complexes but do not change stathmin function. The 4E-stathmin mutant mimics inactive phosphorylated stathmin at low tubulin concentration and sequesters tubulin almost as efficiently as stathmin at higher tubulin concentration. We propose that stathmin acts solely by sequestering tubulin, without affecting microtubule dynamics, and that the effect of stathmin phosphorylation on microtubule assembly depends on tubulin critical concentration.  相似文献   

2.
Stathmin/Op18 destabilizes microtubules in vitro and regulates microtubule polymerization in vivo. Both a microtubule catastrophe-promoting activity and a tubulin sequestering activity were demonstrated for stathmin in vitro, and both could contribute to microtubule depolymerization in vivo. Stathmin activity can be turned down by extensive phosphorylation on its four phosphorylatable serines, and down-regulation of stathmin activity by phosphorylation is necessary for cells to proceed through mitosis. We show here that microinjection of a nonphosphorylatable Ser to Ala (4A) quadruple mutant in Xenopus two-cell stage embryos results in cell cleavage arrest in the injected blastomeres and aborted development, whereas injection of a pseudo-phosphorylated Ser to Glu quadruple mutant (4E) does not prevent normal development. Addition of these mutants to mitotic cytostatic factor-arrested extracts in which spindle assembly was induced led to a dramatic reduction of spindle size with 4A stathmin, and to a moderate increase with 4E stathmin, but both localized to spindle poles. Interestingly, the microtubule assembly-dependent phosphorylation of endogenous stathmin was abolished in the presence of 4A stathmin, but not of 4E stathmin. Altogether, this shows that the phosphorylation-mediated regulation of stathmin activity during the cell cycle is essential for early Xenopus embryonic development.  相似文献   

3.
Stathmin is a ubiquitous microtubule destabilizing protein that is believed to play an important role linking cell signaling to the regulation of microtubule dynamics. Here we show that stathmin strongly destabilizes microtubule minus ends in vitro at steady state, conditions in which the soluble tubulin and microtubule levels remain constant. Stathmin increased the minus end catastrophe frequency approximately 13-fold at a stathmin:tubulin molar ratio of 1:5. Stathmin steady-state catastrophe-promoting activity was considerably stronger at the minus ends than at the plus ends. Consistent with its ability to destabilize minus ends, stathmin strongly increased the treadmilling rate of bovine brain microtubules. By immunofluorescence microscopy, we also found that stathmin binds to purified microtubules along their lengths in vitro. Co-sedimentation of purified microtubules polymerized in the presence of a 1:5 initial molar ratio of stathmin to tubulin yielded a binding stoichiometry of 1 mol of stathmin per approximately 14.7 mol of tubulin in the microtubules. The results firmly establish that stathmin can increase the steady-state catastrophe frequency by a direct action on microtubules, and furthermore, they indicate that an important regulatory action of stathmin in cells may be to destabilize microtubule minus ends.  相似文献   

4.
Stathmin is a ubiquitous regulatory phosphoprotein, the generic element of a family of neural phosphoproteins in vertebrates that possess the capacity to bind tubulin and interfere with microtubule dynamics. Although stathmin and the other proteins of the family have been associated with numerous cell regulations, their biological roles remain elusive, as in particular inactivation of the stathmin gene in the mouse resulted in no clear deleterious phenotype. We identified stathmin phosphoproteins in Drosophila, encoded by a unique gene sharing the intron/exon structure of the vertebrate stathmin and stathmin family genes. They interfere with microtubule assembly in vitro, and in vivo when expressed in HeLa cells. Drosophila stathmin expression is regulated during embryogenesis: it is high in the migrating germ cells and in the central and peripheral nervous systems, a pattern resembling that of mammalian stathmin. Furthermore, RNA interference inactivation of Drosophila stathmin expression resulted in germ cell migration arrest at stage 14. It also induced important anomalies in nervous system development, such as loss of commissures and longitudinal connectives in the ventral cord, or abnormal chordotonal neuron organization. In conclusion, a single Drosophila gene encodes phosphoproteins homologous to the entire vertebrate stathmin family. We demonstrate for the first time their direct involvement in major biological processes such as development of the reproductive and nervous systems.  相似文献   

5.
Stathmin, also referred to as Op18, is a ubiquitous cytosolic phosphoprotein, proposed to be a small regulatory protein and a relay integrating diverse intracellular signaling pathways involved in the control of cell proliferation, differentiation and activities. It interacts with several putative downstream target and/or partner proteins. One major action of stathmin is to interfere with microtubule dynamics, by inhibiting the formation of microtubules and/or favoring their depolymerization. Stathmin (S) interacts directly with soluble tubulin (T), which results in the formation of a T2S complex which sequesters free tubulin and therefore impedes microtubule formation. However, it has been also proposed that stathmin's action on microtubules might result from the direct promotion of catastrophes, which is still controversial. Phosphorylation of stathmin regulates its biological actions: it reduces its affinity for tubulin and hence its action on microtubule dynamics, which allows for example progression of cells through mitosis. Stathmin is also the generic element of a protein family including the neural proteins SCG10, SCLIP and RB3/RB3'/RB3". Interestingly, the stathmin-like domains of these proteins also possess a tubulin binding activity in vitro. In vivo, the transient expression of neural phosphoproteins of the stathmin family leads to their localization at Golgi membranes and, as previously described for stathmin and SCG10, to the depolymerization of interphasic microtubules. Altogether, the same mechanism for microtubule destabilization, that implies tubulin sequestration, is a common feature likely involved in the specific biological roles of each member of the stathmin family.  相似文献   

6.
The role of stathmin in the regulation of the cell cycle   总被引:24,自引:0,他引:24  
Stathmin is the founding member of a family of proteins that play critically important roles in the regulation of the microtubule cytoskeleton. Stathmin regulates microtubule dynamics by promoting depolymerization of microtubules and/or preventing polymerization of tubulin heterodimers. Upon entry into mitosis, microtubules polymerize to form the mitotic spindle, a cellular structure that is essential for accurate chromosome segregation and cell division. The microtubule-depolymerizing activity of stathmin is switched off at the onset of mitosis by phosphorylation to allow microtubule polymerization and assembly of the mitotic spindle. Phosphorylated stathmin has to be reactivated by dephosphorylation before cells exit mitosis and enter a new interphase. Interfering with stathmin function by forced expression or inhibition of expression results in reduced cellular proliferation and accumulation of cells in the G2/M phases of the cell cycle. Forced expression of stathmin leads to abnormalities in or a total lack of mitotic spindle assembly and arrest of cells in the early stages of mitosis. On the other hand, inhibition of stathmin expression leads to accumulation of cells in the G2/M phases and is associated with severe mitotic spindle abnormalities and difficulty in the exit from mitosis. Thus, stathmin is critically important not only for the formation of a normal mitotic spindle upon entry into mitosis but also for the regulation of the function of the mitotic spindle in the later stages of mitosis and for the timely exit from mitosis. In this review, we summarize the early studies that led to the identification of the important mitotic function of stathmin and discuss the present understanding of its role in the regulation of microtubules dynamics during cell-cycle progression. We also describe briefly other less mature avenues of investigation which suggest that stathmin may participate in other important biological functions and speculate about the future directions that research in this rapidly developing field may take.  相似文献   

7.
Stathmin is a microtubule-destabilizing protein ubiquitously expressed in vertebrates and highly expressed in many cancers. In several cell types, stathmin regulates the partitioning of tubulin between unassembled and polymer forms, but the mechanism responsible for partitioning has not been determined. We examined stathmin function in two cell systems: mouse embryonic fibroblasts (MEFs) isolated from embryos +/+, +/−, and −/− for the stathmin gene and porcine kidney epithelial (LLCPK) cells expressing stathmin-cyan fluorescent protein (CFP) or injected with stathmin protein. In MEFs, the relative amount of stathmin corresponded to genotype, where cells heterozygous for stathmin expressed half as much stathmin mRNA and protein as wild-type cells. Reduction or loss of stathmin resulted in increased microtubule polymer but little change to microtubule dynamics at the cell periphery. Increased stathmin level in LLCPK cells, sufficient to reduce microtubule density, but allowing microtubules to remain at the cell periphery, also did not have a major impact on microtubule dynamics. In contrast, stathmin level had a significant effect on microtubule nucleation rate from centrosomes, where lower stathmin levels increased nucleation and higher stathmin levels reduced nucleation. The stathmin-dependent regulation of nucleation is only active in interphase; overexpression of stathmin-CFP did not impact metaphase microtubule nucleation rate in LLCPK cells and the number of astral microtubules was similar in stathmin +/+ and −/− MEFs. These data support a model in which stathmin functions in interphase to control the partitioning of tubulins between dimer and polymer pools by setting the number of microtubules per cell.  相似文献   

8.
Control of intrinsically disordered stathmin by multisite phosphorylation   总被引:1,自引:0,他引:1  
Stathmin is an intrinsically disordered protein implicated in the regulation of microtubule dynamics and in the development of cancer. The microtubule destabilizing activity of stathmin is down-regulated by phosphorylation of four serine residues, Ser16, Ser25, Ser38, and Ser63. Here we have used calorimetric and spectroscopic methods, including nuclear magnetic resonance to analyze the properties of seven stathmin phosphoisoforms to bind tubulin and inhibit microtubule formation. We found that stathmin phosphorylation results in a substantial loss in hydration entropy upon tubulin-stathmin complex formation. Remarkably, a linear correlation between the free energy change of complex formation and the microtubule inhibition activities of stathmin phosphoisoforms was observed. This finding provides a biophysical basis for understanding the mechanism by which local stathmin activity gradients important for promoting localized microtubule growth are established. We further found that phosphorylation of Ser16 and Ser63 disrupts the formation of a tubulin-interacting beta-hairpin and a helical segment, respectively, explaining the dominant role of these residues in regulating cell cycle progression. The insight into the tubulin-stathmin interaction offers a molecular basis for understanding the nature and the factors that control intrinsically disordered protein systems in general.  相似文献   

9.
Stathmin 1 performs a critical function in cell proliferation by regulating microtubule polymerization. This proliferative function is thought to explain the frequent overexpression of stathmin in human cancer and its correlation with a bad prognosis. Whether stathmin also functions in cell death pathways is unclear. Stathmin regulates microtubules in part by binding free tubulin, a process inhibited by stathmin phosphorylation from kinases including c-Jun N-terminal kinase (JNK). The involvement of JNK activation both in stathmin phosphorylation, and in hepatocellular resistance to oxidative stress, led to an examination of the role of stathmin/JNK crosstalk in oxidant-induced hepatocyte death. Oxidative stress from menadione-generated superoxide induced JNK-dependent stathmin phosphorylation at Ser-16, Ser-25 and Ser-38 in hepatocytes. A stathmin knockdown sensitized hepatocytes to both apoptotic and necrotic cell death from menadione without altering levels of oxidant generation. The absence of stathmin during oxidative stress led to JNK overactivation that was the mechanism of cell death as a concomitant knockdown of JNK1 or JNK2 blocked death. Hepatocyte death from JNK overactivation was mediated by the effects of JNK on mitochondria. Mitochondrial outer membrane permeabilization occurred in stathmin knockdown cells at low concentrations of menadione that triggered apoptosis, whereas mitochondrial β-oxidation and ATP homeostasis were compromised at higher, necrotic menadione concentrations. Stathmin therefore mediates hepatocyte resistance to death from oxidative stress by down regulating JNK and maintaining mitochondrial integrity. These findings demonstrate a new mechanism by which stathmin promotes cell survival and potentially tumor growth.  相似文献   

10.
Stathmin family phosphoproteins (stathmin, SCG10, SCLIP, and RB3/RB3'/RB3") are involved in signal transduction and regulation of microtubule dynamics. With the exception of stathmin, they are expressed exclusively in the nervous system, where they display different spatio-temporal and functional regulations and hence play at least partially distinct and possibly complementary roles in relation to the control of development, plasticity, and neuronal activities. At the molecular level, each possesses a specific "stathmin-like domain" and, with the exception of stathmin, various combinations of N-terminal extensions involved in their association with intracellular membrane compartments. We show here that each stathmin-like domain also displays specific biochemical and tubulin interaction properties. They are all able to sequester two alpha/beta tubulin heterodimers as revealed by their inhibitory action on tubulin polymerization and by gel filtration. However, they differ in the stabilities of the complexes formed as well as in their interaction kinetics with tubulin followed by surface plasmon resonance as follows: strong stability and slow kinetics for RB3; medium for SCG10, SCLIP, and stathmin; and weak stability and rapid kinetics for RB3'. These results suggest that the fine-tuning of their stathmin-like domains contributes to the specific functional roles of stathmin family proteins in the regulation of microtubule dynamics within the various cell types and subcellular compartments of the developing or mature nervous system.  相似文献   

11.
Model for stathmin/OP18 binding to tubulin   总被引:8,自引:0,他引:8       下载免费PDF全文
Stathmin/OP18 is a regulatory phosphoprotein that controls microtubule (MT) dynamics. The protein does not have a defined three-dimensional structure, although it contains three distinct regions (an unstructured N-terminus, N: 1-44; a region with high helix propensity, H 1: 44-89; and a region with low helix propensity, H 2: 90-142). The full protein and a combination of H 1 and H 2 inhibits tubulin polymerization, while the combination of H 1 and the N-terminus is less efficient. None of the individual three regions alone are functional in this respect. However, all of them cross-link to alpha-tubulin, but only full-length stathmin produces high-molecular-weight products. Mass spectrometry analysis of alpha-tubulin-stathmin/OP18 and its truncation products shows that full-length stathmin/OP18 binds to the region around helix 10 of alpha-tubulin, a region that is involved in longitudinal interactions in the MT, sequestering the dimer and possibly linking two tubulin heterodimers. In the absence of the N-terminus, stathmin/OP18 binds to only one molecule of alpha-tubulin, at the top of the free tubulin heterodimer, preventing polymerization.  相似文献   

12.
Stathmin is a cytosoluble phosphoprotein proposed to be a regulatory relay integrating diverse intracellular signaling pathway. Its interaction with tubulin modulates microtubule dynamics by destabilization of assembled microtubules or inhibition of their polymerization from free tubulin. The aim of this study was to probe the native structure of stathmin and to delineate its minimal region able to interact with tubulin. Limited proteolysis of stathmin revealed four structured domains within the native protein, corresponding to amino acid sequences 22-81 (I), 95-113 (II), 113-128 (III), and 128-149 (IV), which allows us to propose stathmin folding hypotheses. Furthermore, stathmin proteolytic fragments were mixed to interact with tubulin, and those that retained affinity for tubulin were isolated by size exclusion chromatography and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The results indicate that, to interact with tubulin, a stathmin fragment must span a minimal core region from residues 42 to 126, which interestingly corresponds to the predicted alpha-helical "interaction region" of stathmin. In addition, an interacting stathmin fragment must include a short N- or C-terminal extension. The functional significance of these interaction constrains is further validated by tubulin polymerization inhibition assays with fragments designed on the basis of the tubulin binding results. The present results will help to optimize further stathmin structural studies and to develop molecular tools to target its interaction with tubulin.  相似文献   

13.
Stathmin/Op 18 is a microtubule (MT) dynamics-regulating protein that has been shown to have both catastrophe-promoting and tubulin-sequestering activities. The level of stathmin/Op18 phosphorylation was proved both in vitro and in vivo to be important in modulating its MT-destabilizing activity. To understand the in vivo regulation of stathmin/Op18 activity, we investigated whether MT assembly itself could control phosphorylation of stathmin/Op18 and thus its MT-destabilizing activity. We found that MT nucleation by centrosomes from Xenopus sperm or somatic cells and MT assembly promoted by dimethyl sulfoxide or paclitaxel induced stathmin/Op18 hyperphosphorylation in Xenopus egg extracts, leading to new stathmin/Op18 isoforms phosphorylated on Ser 16. The MT-dependent phosphorylation of stathmin/Op18 took place in interphase extracts as well, and was also observed in somatic cells. We show that the MT-dependent phosphorylation of stathmin/Op18 on Ser 16 is mediated by an activity associated to the MTs, and that it is responsible for the stathmin/Op18 hyperphosphorylation reported to be induced by the addition of "mitotic chromatin." Our results suggest the existence of a positive feedback loop, which could represent a novel mechanism contributing to MT network control.  相似文献   

14.
15.
16.
The microtubule cytoskeleton is differentially regulated by a diverse array of proteins during interphase and mitosis. Op18/stathmin (Op18) and microtubule-associated protein (MAP)4 have been ascribed opposite general microtubule-directed activities, namely, microtubule destabilization and stabilization, respectively, both of which can be inhibited by phosphorylation. Here, using three human cell models, we depleted cells of Op18 and/or MAP4 by expression of interfering hairpin RNAs and we analyzed the resulting phenotypes. We found that the endogenous levels of Op18 and MAP4 have opposite and counteractive activities that largely govern the partitioning of tubulin dimers in the microtubule array at interphase. Op18 and MAP4 were also found to be the downstream targets of Ca(2+)- and calmodulin-dependent protein kinase IV and PAR-1/MARK2 kinase, respectively, that control the demonstrated counteractive phosphorylation-mediated regulation of tubulin dimer partitioning. Furthermore, to address mechanisms regulating microtubule polymerization in response to cell signals, we developed a system for inducible gene product replacement. This approach revealed that site-specific phosphorylation of Op18 is both necessary and sufficient for polymerization of microtubules in response to the multifaceted signaling event of stimulation of the T cell antigen receptor complex, which activates several signal transduction pathways.  相似文献   

17.
In the leading edge of migrating cells, a subset of microtubules exhibits net growth in a Rac1- and p21-activated kinase-dependent manner. Here, we explore the possibility of whether phosphorylation and inactivation of the microtubule-destabilizing protein Op18/stathmin could be a mechanism regulating microtubule dynamics downstream of Rac1 and p21-activated kinases. We find that, in vitro, Pak1 phosphorylates Op18/stathmin specifically at serine 16 and inactivates its catastrophe promoting activity in biochemical and time lapse microscopy microtubule assembly assays. Furthermore, phosphorylation of either serine 16 or 63 is sufficient to inhibit Op18/stathmin in vitro. In cells, the microtubule-destabilizing effect of an excess of Op18/stathmin can be partially overcome by expression of constitutively active Rac1(Q61L), which is dependent on Pak activity, suggesting that the microtubule cytoskeleton can be regulated through inactivation of Op18/stathmin downstream of Rac1 and Pak in vivo. However, in vivo, Pak1 activity alone is not sufficient to phosphorylate Op18, indicating that additional pathways downstream of Rac1 are required for Op18 regulation.  相似文献   

18.
Stathmin is one of the key regulators of the microtubule cytoskeleton and the mitotic spindle in eukaryotic cells. It is expressed at high levels in a wide variety of human cancers and may provide an attractive target for cancer therapy. We had previously shown that stathmin inhibition results in the abrogation of the malignant phenotype. The microtubule-interfering drug, taxol, has both antitumorigenic and antiangiogenic properties. We had also shown that the antitumor activities of taxol and stathmin inhibition are synergistic. We hypothesized that taxol and stathmin inhibition may also have synergistic antiangiogenic activities. A replication-deficient bicistronic adenoviral vector that coexpresses green fluorescent protein and an anti-stathmin ribozyme was used to target stathmin mRNA. Exposure of endothelial cells to anti-stathmin adenovirus alone resulted in a dose-dependent inhibition of proliferation, migration, and differentiation into capillary-like structures. This inhibition was markedly enhanced by exposure of transduced endothelial cells to very low concentrations of taxol, which resulted in a virtually complete loss of proliferation, migration, and differentiation of endothelial cells. In contrast, exposure of nontransduced endothelial cells to taxol alone resulted in a modest inhibition of proliferation, migration, and differentiation. Our detailed analysis showed that the antiangiogenic effects of the combination of stathmin inhibition and taxol exposure are synergistic. Our studies also showed that the mechanism of this synergistic interaction is likely to be mediated through the stabilization of microtubules. Thus, this novel combination may provide an attractive therapeutic strategy that combines a synergistic antitumor activity with a synergistic antiangiogenic activity.  相似文献   

19.
The oncoprotein 18/stathmin family of microtubule destabilizers.   总被引:19,自引:0,他引:19  
The past several years have seen major advances in our understanding of the mechanisms of microtubule destabilization by oncoprotein18/stathmin (Op18/stathmin) and related proteins. New structural information has clearly shown how members of the Op18/stathmin protein family bind tubulin dimers and suggests models for how these proteins stimulate catastrophe, the transition from microtubule growth to shortening. Regulation of Op18/stathmin by phosphorylation continues to capture much attention. Studies suggest that phosphorylation occurs in a localized fashion, resulting in decreased microtubule destabilizing activity near chromatin or microtubule polymer. A spatial gradient of inactive Op18/stathmin associated with chromatin or microtubules could contribute significantly to mitotic spindle assembly.  相似文献   

20.
During nervous system development, neuronal growth, migration, and functional morphogenesis rely on the appropriate control of the subcellular cytoskeleton including microtubule dynamics. Stathmin family proteins play major roles during the various stages of neuronal differentiation, including axonal growth and branching, or dendritic development. We have shown previously that stathmins 2 (SCG10) and 3 (SCLIP) fulfill distinct, independent and complementary regulatory roles in axonal morphogenesis. Although the two proteins have been proposed to display the four conserved phosphorylation sites originally identified in stathmin 1, we show here that they possess distinct phosphorylation sites within their specific proline-rich domains (PRDs) that are differentially regulated by phosphorylation by proline-directed kinases involved in the control of neuronal differentiation. ERK2 or CDK5 phosphorylate the two proteins but with different site specificities. We also show for the first time that, unlike stathmin 2, stathmin 3 is a substrate for glycogen synthase kinase (GSK) 3β both in vitro and in vivo. Interestingly, stathmin 3 phosphorylated at its GSK-3β target site displays a specific subcellular localization at neuritic tips and within the actin-rich peripheral zone of the growth cone of differentiating hippocampal neurons in culture. Finally, pharmacological inhibition of GSK-3β induces a redistribution of stathmin 3, but not stathmin 2, from the periphery toward the Golgi region of neurons. Stathmin proteins can thus be either regulated locally or locally targeted by specific phosphorylation, each phosphoprotein of the stathmin family fulfilling distinct and specific roles in the control of neuronal differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号