首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
Voltage-gated potassium (Kv) channel gating involves complex structural rearrangements that regulate the ability of channels to conduct K(+) ions. Fluorescence-based approaches provide a powerful technique to directly report structural dynamics underlying these gating processes in Shaker Kv channels. Here, we apply voltage clamp fluorimetry, for the first time, to study voltage sensor motions in mammalian Kv1.5 channels. Despite the homology between Kv1.5 and the Shaker channel, attaching TMRM or PyMPO fluorescent probes to substituted cysteine residues in the S3-S4 linker of Kv1.5 (M394C-V401C) revealed unique and unusual fluorescence signals. Whereas the fluorescence during voltage sensor movement in Shaker channels was monoexponential and occurred with a similar time course to ionic current activation, the fluorescence report of Kv1.5 voltage sensor motions was transient with a prominent rapidly dequenching component that, with TMRM at A397C (equivalent to Shaker A359C), represented 36 +/- 3% of the total signal and occurred with a tau of 3.4 +/- 0.6 ms at +60 mV (n = 4). Using a number of approaches, including 4-AP drug block and the ILT triple mutation, which dissociate channel opening from voltage sensor movement, we demonstrate that the unique dequenching component of fluorescence is associated with channel opening. By regulating the outer pore structure using raised (99 mM) external K(+) to stabilize the conducting configuration of the selectivity filter, or the mutations W472F (equivalent to Shaker W434F) and H463G to stabilize the nonconducting (P-type inactivated) configuration of the selectivity filter, we show that the dequenching of fluorescence reflects rapid structural events at the selectivity filter gate rather than the intracellular pore gate.  相似文献   

2.
The inner pore of potassium channels is targeted by many ligands of intriguingly different chemical structures. Previous studies revealed common and diverse characteristics of action of ligands including cooperativity of ligand binding, voltage- and use-dependencies, and patterns of ligand-sensing residues. Not all these data are rationalized in published models of ligand-channel complexes. Here we have used energy calculations with experimentally defined constraints to dock flecainide, ICAGEN-4, benzocaine, vernakalant, and AVE0118 into the inner pore of Kv1.5 channel. We arrived at ligand-binding models that suggest possible explanations for different values of the Hill coefficient, different voltage dependencies of ligands action, and effects of mutations of residues in subunit interfaces. Two concepts were crucial to build the models. First, the inner-pore block of a potassium channel requires a cationic “blocking particle”. A ligand, which lacks a positively charged group, blocks the channel in a complex with a permeant ion. Second, hydrophobic moieties of a flexible ligand have a tendency to bind in hydrophobic subunit interfaces.  相似文献   

3.
The quaternary ammonium compound clofilium and its tertiary amine derivative LY97241 were used to analyze mechanisms of block in a voltage-gated potassium channel. Wild-type and mutant Kv1.5 channels expressed in Xenopus oocytes were recorded by two-electrode voltage clamp. Open-channel block to 20% of the control current amplitude was induced reversibly by 50 microM clofilium or 200 microM LY97241, and was seen as an acceleration of the macroscopic current decay. Although blockers remained present after application, channels recovered from block during each interpulse interval. The optimum voltage for recovery (-45 mV at pH 7.3) at the threshold for channel activation indicated that clofilium block and recovery occurred principally through the open channel state. In contrast, LY97241 appeared to exit from the closed state and the open state. In an acid-tolerant Kv1.5 mutant channel (H452Q), external pH was used to titrate LY97241. At low pH, which protonates the LY97241 amine group, recovery from block at hyperpolarized potentials was impaired in a manner similar to that seen with clofilium. Recovery from clofilium block was reduced at negative potentials independent of pH, an effect attributed to trapping of the permanently charged compound within the closed channels.  相似文献   

4.
Kv1.5 channels conduct the ultrarapid delayed rectifier current (IKur) that contributes to action potential repolarization of human atrial myocytes. Block of these channels has been proposed as a treatment for atrial arrhythmias. Here we report a novel and potent inhibitor of Kv1.5 potassium channels, N-benzyl-N-pyridin-3-yl-methyl-2-(toluene-4-sulfonylamino)-benzamide hydrochloride (S0100176), which exhibits features consistent with preferential block of the open state. The IC50 of S0100176 for Kv1.5 expressed in Xenopus oocytes was 0.7 microm. Ala-scanning mutagenesis within the pore helix and the S6 segment, regions that form the walls of the central cavity, was combined with voltage clamp analysis to identify point mutations that altered drug affinity. This approach identified Thr-479, Thr-480, Val-505, Ile-508, and Val-512 as the most important residues for block by S0100176. Mutations of these key residues to Ala or other amino acids caused marked changes in the IC50 of S0100176 (p<0.01). For example, the IC50 of S0100176 increased 362-fold for T480A, 26-fold for V505A, 150-fold for I508A, and 99-fold for V512A. We used modeling to dock S0100176 into the inner cavity of a Kv1.5 pore homology model that was generated based on the crystal structure of KcsA. The docking predicted that the five residues identified by the Ala scan were positioned less than 4.5 A from the compound. Based on the homology models, the positions of the five amino acids identified to interact with S0100176 face toward the central cavity and overlap with putative binding sites for other blockers and voltage-gated potassium channels.  相似文献   

5.
The Kv2.1 potassium channel contains a lysine in the outer vestibule (position 356) that markedly reduces open channel sensitivity to changes in external [K(+)]. To investigate the mechanism underlying this effect, we examined the influence of this outer vestibule lysine on three measures of K(+) and Na(+) permeation. Permeability ratio measurements, measurements of the lowest [K(+)] required for interaction with the selectivity filter, and measurements of macroscopic K(+) and Na(+) conductance, were all consistent with the same conclusion: that the outer vestibule lysine in Kv2.1 interferes with the ability of K(+) to enter or exit the extracellular side of the selectivity filter. In contrast to its influence on K(+) permeation properties, Lys 356 appeared to be without effect on Na(+) permeation. This suggests that Lys 356 limited K(+) flux by interfering with a selective K(+) binding site. Combined with permeation studies, results from additional mutagenesis near the external entrance to the selectivity filter indicated that this site was located external to, and independent from, the selectivity filter. Protonation of a naturally occurring histidine in the same outer vestibule location in the Kv1.5 potassium channel produced similar effects on K(+) permeation properties. Together, these results indicate that a selective, functional K(+) binding site (e.g., local energy minimum) exists in the outer vestibule of voltage-gated K(+) channels. We suggest that this site is the location of K(+) hydration/dehydration postulated to exist based on the structural studies of KcsA. Finally, neutralization of position 356 enhanced outward K(+) current magnitude, but did not influence the ability of internal K(+) to enter the pore. These data indicate that in Kv2.1, exit of K(+) from the selectivity filter, rather than entry of internal K(+) into the channel, limits outward current magnitude. We discuss the implications of these findings in relation to the structural basis of channel conductance in different K(+) channels.  相似文献   

6.
In the Kv2.1 potassium channel, binding of K(+) to a high-affinity site associated with the selectivity filter modulates channel sensitivity to external TEA. In channels carrying Na(+) current, K(+) interacts with the TEA modulation site at concentrations 相似文献   

7.
Nifedipine can block K(+) currents through Kv1.5 channels in an open-channel manner (32). Replacement of internal and external K(+) with equimolar Rb(+) or Cs(+) reduced the potency of nifedipine block of Kv1.5 from an IC(50) of 7.3 microM (K(+)) to 16.0 microM (Rb(+)) and 26.9 microM (Cs(+)). The voltage dependence of block was unaffected, and a single binding site block model was used to describe block for all three ions. By varying ion species at the intra- and extracellular mouth of the channel and by using a nonconducting W472F-Kv1.5 mutant, we demonstrated that block was conditioned by the ion permeating the pore and, to a lesser extent, by the extracellular ion species alone. In Kv1.5, the outer pore mutations R487V and R487Y reduced nifedipine potency close to that of Kv4.2 and other Kv channels with an equivalent valine. Although changing this residue can affect C-type inactivation of Kv channels, the normalized reduction and time course of currents blocked by nifedipine in 5, 135, and 300 mM extracellular K(+) concentration was the same. Similarly, a mean recovery time constant from nifedipine block of 316 ms was unchanged (332 ms) after 5-s prepulses to allow C-type inactivation. This is consistent with the conclusion that nifedipine block and C-type inactivation in the Kv1.5 channel can coexist but are mediated by distinct mechanisms coordinated by outer pore conformation.  相似文献   

8.
A functional cell-based assay was developed using a generic proprietary assay protocol, based on a membrane-potential sensitive dye, for the identification of small-molecule antagonists against the Kv1.3 potassium ion channel. A high-throughput screen (HTS) was subsequently performed with 20,000 compounds from the Evotec library, preselected using known small molecule antagonists for both sodium and potassium ion channels. Following data analysis, the hit rate was measured at 1.72%, and subsequent dose-response analysis of selected hits showed a high hit confirmation rate yielding approximately 50 compounds with an apparent IC50 value lower than 10 microM. Subsequent electrophysiological characterization of selected hits confirmed the initial activity and potency of the identified hits on the Kv1.3 target and also selectivity toward Kv1.3 through measurements on HERG as well as Kv1.3-expressing cell lines. Follow-up structure-activity relationship analysis revealed a variety of different clusters distributed throughout the library as well as several singlicates. In comparison to known Kv1.3 blockers, new chemical entities and scaffolds showing potency and selectivity against the Kv1.3 ion channel were detected. In addition, a screening strategy for ion channel drug discovery HTS, medicinal chemistry, and electrophysiology is presented.  相似文献   

9.
The voltage-gated potassium channel, Kv1.3, is present in human T-lymphocytes. Blockade of Kv1.3 results in T-cell depolarization, inhibition of T-cell activation, and attenuation of immune responses in vivo. A class of benzamide Kv1.3 channel inhibitors has been identified. The structure-activity relationship within this class of compounds in two functional assays, Rb_Kv and T-cell proliferation, is presented. In in vitro assays, trans isomers display moderate selectivity for binding to Kv1.3 over other Kv1.x channels present in human brain.  相似文献   

10.
A structural model of BgK, a sea anemone toxin, complexed with the S5-S6 region of Kv1.1, a voltage-gated potassium channel, was determined by flexible docking under distance restraints identified by a double mutant cycles approach. This structure provides the molecular basis for identifying the major determinants of the BgK-Kv1.1 channel interactions involving the BgK dyad residues Lys(25) and Tyr(26). These interactions are (i) electrostatic interactions between the extremity of Lys(25) side chain and carbonyl oxygen atoms of residues from the channel selectivity filter that may be strengthened by solvent exclusion provided by (ii) hydrophobic interactions involving BgK residues Tyr(26) and Phe(6) and Kv1.1 residue Tyr(379) whose side chain protrudes in the channel vestibule. In other Kv1 channel-BgK complexes, these interactions are likely to be conserved, implicating both conserved and variable residues from the channels. The data suggest that the conservation in sea anemone and scorpion potassium channel blockers of a functional dyad composed of a lysine, and a hydrophobic residue reflects their use of convergent binding solutions based on a crucial interplay between these important conserved interactions.  相似文献   

11.
Internal Mg2+ blocks many potassium channels including Kv1.5. Here, we show that internal Mg2+ block of Kv1.5 induces voltage-dependent current decay at strongly depolarised potentials that contains a component due to acceleration of C-type inactivation after pore block. The voltage-dependent current decay was fitted to a bi-exponential function (tau(fast) and tau(slow)). Without Mg2+, tau(fast) and tau(slow) were voltage-independent, but with 10 mM Mg2+, tau(fast) decreased from 156 ms at +40 mV to 5 ms at +140 mV and tau(slow) decreased from 2.3 s to 206 ms. With Mg2+, tail currents after short pulses that allowed only the fast phase of decay showed a rising phase that reflected voltage-dependent unbinding. This suggested that the fast phase of voltage-dependent current decay was due to Mg2+ pore block. In contrast, tail currents after longer pulses that allowed the slow phase of decay were reduced to almost zero suggesting that the slow phase was due to channel inactivation. Consistent with this, the mutation R487V (equivalent to T449V in Shaker) or increasing external K+, both of which reduce C-type inactivation, prevented the slow phase of decay. These results are consistent with voltage-dependent open-channel block of Kv1.5 by internal Mg2+ that subsequently induces C-type inactivation by restricting K+ filling of the selectivity filter from the internal solution.  相似文献   

12.
Inactivation of voltage-gated Kv1 channels can be altered by Kvbeta subunits, which block the ion-conducting pore to induce a rapid ('N-type') inactivation. Here, we investigate the mechanisms and structural basis of Kvbeta1.3 interaction with the pore domain of Kv1.5 channels. Inactivation induced by Kvbeta1.3 was antagonized by intracellular PIP(2). Mutations of R5 or T6 in Kvbeta1.3 enhanced Kv1.5 inactivation and markedly reduced the effects of PIP(2). R5C or T6C Kvbeta1.3 also exhibited diminished binding of PIP(2) compared with wild-type channels in an in vitro lipid-binding assay. Further, scanning mutagenesis of the N terminus of Kvbeta1.3 revealed that mutations of L2 and A3 eliminated N-type inactivation. Double-mutant cycle analysis indicates that R5 interacts with A501 and T480 of Kv1.5, residues located deep within the pore of the channel. These interactions indicate that Kvbeta1.3, in contrast to Kvbeta1.1, assumes a hairpin structure to inactivate Kv1 channels. Taken together, our findings indicate that inactivation of Kv1.5 is mediated by an equilibrium binding of the N terminus of Kvbeta1.3 between phosphoinositides (PIPs) and the inner pore region of the channel.  相似文献   

13.
The interaction between the amino terminus of Kv1-type potassium channels and alpha-actinin-2 has been investigated. Using a combination of yeast two-hybrid analysis and in vitro binding assays, alpha-actinin-2 was found to bind to the N-termini of both Kv1.4 and Kv1.5 but not to the equivalent segments of Kv1.1, Kv1.2 or Kv1.3. Deletion analysis in the in vitro binding assays delineated the actinin binding region of Kv1.5 to between amino acids 73 and 148 of the channel. The Kv1.5 binding sites in alpha-actinin-2 were found to lie within actinin's internal spectrin repeats. Unlike the reported interaction between actinin and the NMDA receptor, calmodulin was found to have no effect on actinin binding to Kv1.5.  相似文献   

14.
Eldstrom J  Choi WS  Steele DF  Fedida D 《FEBS letters》2003,547(1-3):205-211
The functional interaction of the voltage-gated potassium channel hKv1.5 with the PDZ domain containing protein SAP97 has been investigated. In marked contrast with the known dependence of SAP97-induced Kv1 potassium current down-regulation on the channel C-termini, SAP97 increased hKv1.5 current through an indirect interaction with the Kv1.5 N-terminus. Deletion of the Kv1.5 N-terminus eliminated the SAP97-mediated increase in potassium currents whereas deletion of the channel's C-terminal PDZ binding motif had no effect. In contrast with other Kv1-SAP97 interactions, no physical interaction could be detected in vivo or in vitro between the two proteins. The proteins did not co-localize in cardiac myocytes nor did they co-immunoprecipitate from transfected HEK cells. Yeast two-hybrid experiments also failed to detect any interaction between the two proteins, but in one experiment of six, Kv1.5 co-immunoprecipitated very inefficiently with SAP97 from rat ventricular myocytes. Thus, we conclude that the influence of SAP97 on Kv1.5 potassium current levels is dependent upon a novel regulatory mechanism.  相似文献   

15.
Animal toxins block voltage-dependent potassium channels (Kv) either by occluding the conduction pore (pore blockers) or by modifying the channel gating properties (gating modifiers). Gating modifiers of Kv channels bind to four equivalent extracellular sites near the S3 and S4 segments, close to the voltage sensor. Phrixotoxins are gating modifiers that bind preferentially to the closed state of the channel and fold into the Inhibitory Cystine Knot structural motif. We have solved the solution structure of Phrixotoxin 1, a gating modifier of Kv4 potassium channels. Analysis of the molecular surface and the electrostatic anisotropy of Phrixotoxin 1 and of other toxins acting on voltage-dependent potassium channels allowed us to propose a toxin interacting surface that encompasses both the surface from which the dipole moment emerges and a neighboring hydrophobic surface rich in aromatic residues.  相似文献   

16.
A novel nortriterpene, termed correolide, purified from the tree Spachea correae, inhibits Kv1.3, a Shaker-type delayed rectifier potassium channel present in human T lymphocytes. Correolide inhibits 86Rb+ efflux through Kv1.3 channels expressed in CHO cells (IC50 86 nM; Hill coefficient 1) and displays a defined structure-activity relationship. Potency in this assay increases with preincubation time and with time after channel opening. Correolide displays marked selectivity against numerous receptors and voltage- and ligand-gated ion channels. Although correolide is most potent as a Kv1.3 inhibitor, it blocks all other members of the Kv1 family with 4-14-fold lower potency. C20-29-[3H]dihydrocorreolide (diTC) was prepared and shown to bind in a specific, saturable, and reversible fashion (Kd = 11 nM) to a single class of sites in membranes prepared from CHO/Kv1.3 cells. The molecular pharmacology and stoichiometry of this binding reaction suggest that one diTC site is present per Kv1.3 channel tetramer. This site is allosterically coupled to peptide and potassium binding sites in the pore of the channel. DiTC binding to human brain synaptic membranes identifies channels composed of other Kv1 family members. Correolide depolarizes human T cells to the same extent as peptidyl inhibitors of Kv1.3, suggesting that it is a candidate for development as an immunosuppressant. Correolide is the first potent, small molecule inhibitor of Kv1 series channels to be identified from a natural product source and will be useful as a probe for studying potassium channel structure and the physiological role of such channels in target tissues of interest.  相似文献   

17.
The T1 domain is a cytosolic NH2-terminal domain present in all Kv (voltage-dependent potassium) channels, and is highly conserved between Kv channel subfamilies. Our characterization of a truncated form of Kv1.5 (Kv1.5deltaN209) expressed in myocardium demonstrated that deletion of the NH2 terminus of Kv1.5 imparts a U-shaped inactivation-voltage relationship to the channel, and prompted us to investigate the NH2 terminus as a regulatory site for slow inactivation of Kv channels. We examined the macroscopic inactivation properties of several NH2-terminal deletion mutants of Kv1.5 expressed in HEK 293 cells, demonstrating that deletion of residues up to the T1 boundary (Kv1.5deltaN19, Kv1.5deltaN91, and Kv1.5deltaN119) did not alter Kv1.5 inactivation, however, deletion mutants that disrupted the T1 structure consistently exhibited inactivation phenotypes resembling Kv1.5deltaN209. Chimeric constructs between Kv1.5 and the NH2 termini of Kv1.1 and Kv1.3 preserved the inactivation kinetics observed in full-length Kv1.5, again suggesting that the Kv1 T1 domain influences slow inactivation. Furthermore, disruption of intersubunit T1 contacts by mutation of residues Glu(131) and Thr(132) to alanines resulted in channels exhibiting a U-shaped inactivation-voltage relationship. Fusion of the NH2 terminus of Kv2.1 to the transmembrane segments of Kv1.5 imparted a U-shaped inactivation-voltage relationship to Kv1.5, whereas fusion of the NH2 terminus of Kv1.5 to the transmembrane core of Kv2.1 decelerated Kv2.1 inactivation and abolished the U-shaped voltage dependence of inactivation normally observed in Kv2.1. These data suggest that intersubunit T1 domain interactions influence U-type inactivation in Kv1 channels, and suggest a generalized influence of the T1 domain on U-type inactivation between Kv channel subfamilies.  相似文献   

18.
The voltage-gated potassium channel in T lymphocytes, Kv1.3, an important target for immunosuppressants, is blocked by picomolar concentrations of the polypeptide ShK toxin and its analogue ShK-Dap22. ShK-Dap22 shows increased selectivity for Kv1.3, and our goal was to determine the molecular basis for this selectivity by probing the interactions of ShK and ShK-Dap22 with the pore and vestibule of Kv1.3. The free energies of interactions between toxin and channel residues were measured using mutant cycle analyses. These data, interpreted as approximate distance restraints, guided molecular dynamics simulations in which the toxins were docked with a model of Kv1.3 based on the crystal structure of the bacterial K(+)-channel KcsA. Despite the similar tertiary structures of the two ligands, the mutant cycle data imply that they make different contacts with Kv1.3, and they can be docked with the channel in configurations that are consistent with the mutant cycle data for each toxin but quite distinct from one another. ShK binds to Kv1.3 with Lys22 occupying the negatively charged pore of the channel, whereas the equivalent residue in ShK-Dap22 interacts with residues further out in the vestibule, producing a significant change in toxin orientation. The increased selectivity of ShK-Dap22 is achieved by strong interactions of Dap22 with His404 and Asp386 on Kv1.3, with only weak interactions between the channel pore and the toxin. Potent and specific blockade of Kv1.3 apparently occurs without insertion of a positively charged residue into the channel pore. Moreover, the finding that a single residue substitution alters the binding configuration emphasizes the need to obtain consistent data from multiple mutant cycle experiments in attempts to define protein interaction surfaces using these data.  相似文献   

19.
The number of ion channels expressed on the cell surface shapes the complex electrical response of excitable cells. Maintaining a balance between anterograde and retrograde trafficking of channel proteins is vital in regulating steady-state cell surface expression. Kv1.5 is an important voltage-gated K(+) channel in the cardiovascular system underlying the ultra-rapid rectifying potassium current (Ik(ur)), a major repolarizing current in atrial myocytes, and regulating the resting membrane potential and excitability of smooth muscle cells. Defects in the expression of Kv1.5 are associated with pathological states such as chronic atrial fibrillation and hypoxic pulmonary hypertension. There is, thus, substantial interest in understanding the mechanisms regulating cell surface channel levels. Here, we investigated the internalization and recycling of Kv1.5 in the HL-1 immortalized mouse atrial myocytes. Kinetic studies indicate that Kv1.5 is rapidly internalized to a perinuclear region where it co-localizes with the early endosomal marker, EEA1. Importantly, we identified that a population of Kv1.5, originating on the cell surface, internalized and recycled back to the plasma membrane. Notably, Kv1.5 recycling processes are driven by specific Rab-dependent endosomal compartments. Thus, co-expression of GDP-locked Rab4S22N and Rab11S25N dominant-negative mutants decreased the steady-state Kv1.5 surface levels, whereas GTPase-deficient Rab4Q67L and Rab11Q70L mutants increased steady-state Kv1.5 surface levels. These data reveal an unexpected dynamic trafficking of Kv1.5 at the myocyte plasma membrane and demonstrate a role for recycling in the maintenance of steady-state ion channel surface levels.  相似文献   

20.
Selective and potent triarylmethane blockers of the intermediate conductance calcium-activated potassium channel, IKCa1, have therapeutic use in sickle cell disease and secretory diarrhea and as immunosuppressants. Clotrimazole, a membrane-permeant triarylmethane, blocked IKCa1 with equal affinity when applied externally or internally, whereas a membrane-impermeant derivative TRAM-30 blocked the channel only when applied to the cytoplasmic side, indicating an internal drug-binding site. Introduction of the S5-P-S6 region of the triarylmethane-insensitive small conductance calcium-activated potassium channel SKCa3 into IKCa1 rendered the channel resistant to triarylmethanes. Replacement of Thr(250) or Val(275) in IKCa1 with the corresponding SKCa3 residues selectively abolished triarylmethane sensitivity without affecting the affinity of the channel for tetraethylammonium, charybdotoxin, and nifedipine. Introduction of these two residues into SKCa3 rendered the channel sensitive to triarylmethanes. In a molecular model of IKCa1, Thr(250) and Val(275) line a water-filled cavity just below the selectivity filter. Structure-activity studies suggest that the side chain methyl groups of Thr(250) and Val(275) may lock the triarylmethanes in place via hydrophobic interactions with the pi-electron clouds of the phenyl rings. The heterocyclic moiety may project into the selectivity filter and obstruct the ion-conducting pathway from the inside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号