首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Aptamers as reagents for high-throughput screening   总被引:1,自引:0,他引:1  
Green LS  Bell C  Janjic N 《BioTechniques》2001,30(5):1094-6, 1098, 1100 passim
The identification of new drug candidates from chemical libraries is a major component of discovery research in many pharmaceutical companies. Given the large size of many conventional and combinatorial libraries and the rapid increase in the number of possible therapeutic targets, the speed with which efficient high-throughput screening (HTS) assays can be developed can be a rate-limiting step in the discovery process. We show here that aptamers, nucleic acids that bind other molecules with high affinity, can be used as versatile reagents in competition binding HTS assays to identify and optimize small-molecule ligands to protein targets. To illustrate this application, we have used labeled aptamers to platelet-derived growth factor B-chain and wheat germ agglutinin to screen two sets of potential small-molecule ligands. In both cases, binding affinities of all ligands tested (small molecules and aptamers) were strongly correlated with their inhibitory potencies in functional assays. The major advantages of using aptamers in HTS assays are speed of aptamer identification, high affinity of aptamers for protein targets, relatively large aptamer-protein interaction surfaces, and compatibility with various labeling/detection strategies. Aptamers may be particularly useful in HTS assays with protein targets that have no known binding partners such as orphan receptors. Since aptamers that bind to proteins are often specific and potent antagonists of protein function, the use of aptamers for target validation can be coupled with their subsequent use in HTS.  相似文献   

2.
Peptide aptamers are combinatorial recognition molecules that consist of a constant scaffold protein displaying a doubly constrained variable peptide loop. They bind specifically target proteins and interfere with their function. We have built a peptide aptamer library in a lentiviral expression system to isolate aptamers that inhibit cell proliferation in vitro. Using one of the isolated aptamers (R5G42) as a bait protein, we have performed yeast two-hybrid screening of cDNA libraries and identified calcineurin A as a target protein candidate. R5G42 bound calcineurin A in vitro and stimulated its phosphatase activity. When expressed transiently in human cells, R5G42 induced the dephosphorylation of BAD. We have identified an antiproliferative peptide aptamer that binds calcineurin and stimulates its activity. The use of this ligand may help elucidate the still elusive structural mechanisms of activation and inhibition of calcineurin. Our work illustrates the power of phenotypic screening of combinatorial protein libraries to interrogate the proteome and chart molecular regulatory networks.  相似文献   

3.
The application and success of combinatorial approaches to protein engineering problems have increased dramatically. However, current directed evolution strategies lack a combinatorial methodology for creating libraries of hybrid enzymes which lack high homology or for creating libraries of highly homologous genes with fusions at regions of non-identity. To create such hybrid enzyme libraries, we have developed a series of combinatorial approaches that utilize the incremental truncation of genes, gene fragments or gene libraries. For incremental truncation, Exonuclease III is used to create a library of all possible single base-pair deletions of a given piece of DNA. Incremental truncation libraries (ITLs) have applications in protein engineering as well as protein folding, enzyme evolution, and the chemical synthesis of proteins. In addition, we are developing a methodology of DNA shuffling which is independent of DNA sequence homology.  相似文献   

4.
The logic of using nucleic acids as pharmaceutical reagents is in part based on their capacity to interact with high affinity and specificity with other biological components. Considerable progress has been made over the past 10 years in the development of nucleic acid-based drug molecules using a variety of different technologies. One approach is a combinatorial technology that involves an iterative Darwinian-type in vitro evolution process, which has been termed SELEX for 'systematic evolution of ligands by exponential enrichment'. The procedure is a highly efficient method of identifying rare ligands from combinatorial nucleic acid libraries of very high complexity. It allows the selection of nucleic acid molecules with desired functions and it has been instrumental in the identification of a number of synthetic DNA and RNA molecules, so-called aptamers that recognise ligands of different chemical origin. The method is fast, it does not require special equipment and the selected aptamers typically bind their target with high affinity and high specificity. Here we summarise the recent examples of the SELEX technique within the context of identifying high-affinity ligands against parasite target molecules.  相似文献   

5.
The design and use of combinatorial protein libraries has become a fast moving field in molecular biology. Different experimental systems supporting various selection schemes are now available. The latest breakthroughs include evolutionary experiments to improve existing binding surfaces, selections of homodimerizing peptides, the use of peptide aptamers to disrupt protein interactions inside living cells, and functional selections of aptamers to probe regulatory networks.  相似文献   

6.
Peptide aptamers are combinatorial proteins that specifically bind intracellular proteins and modulate their function. They are powerful tools to study protein function within complex regulatory networks and to guide small-molecule drug discovery. Here we describe methodological improvements that enhance the yeast two-hybrid selection and characterization of large collections of peptide aptamers. We provide a detailed protocol to perform high-efficiency transformation of peptide aptamer libraries, in-depth validation experiments of the bait proteins, high-efficiency mating to screen large numbers of peptide aptamers and streamlined confirmation of the positive clones. We also describe yeast two-hybrid mating assays, which can be used to determine the specificity of the selected aptamers, map their binding sites on target proteins and provide structural insights on their target-binding surface. Overall, 12 weeks are required to perform the protocols. The improvements on the yeast two-hybrid method can be also usefully applied to the screening of cDNA libraries to identify protein interactions.  相似文献   

7.
Anterior gradient-2 protein was identified using proteomic technologies as a p53 inhibitor which is overexpressed in human cancers, and this protein presents a novel pro-oncogenic target with which to develop diagnostic assays for biomarker detection in clinical tissue. Combinatorial phage-peptide libraries were used to select 12 amino acid polypeptide aptamers toward anterior gradient-2 to determine whether methods can be developed to affinity purify the protein from clinical biopsies. Selecting phage aptamers through four rounds of screening on recombinant human anterior gradient-2 protein identified two classes of peptide ligand that bind to distinct epitopes on anterior gradient-2 protein in an immunoblot. Synthetic biotinylated peptide aptamers bound in an ELISA format to anterior gradient-2, and substitution mutagenesis further minimized one polypeptide aptamer to a hexapeptide core. Aptamers containing this latter consensus sequence could be used to affinity purify to homogeneity human anterior gradient-2 protein from a single clinical biopsy. The spotting of a panel of peptide aptamers onto a protein microarray matrix could be used to quantify anterior gradient-2 protein from crude clinical biopsy lysates, providing a format for quantitative screening. These data highlight the utility of peptide combinatorial libraries to acquire rapidly a high-affinity ligand that can selectively bind a target protein from a clinical biopsy and provide a technological approach for clinical biomarker assay development in an aptamer microarray format.  相似文献   

8.
Aptamers are short, synthetic nucleic acid molecules. They are generated by a Darwinian-type in vitro evolution method known as 'systematic evolution of ligands by exponential enrichment' (SELEX). SELEX represents an experimental platform to identify rare ligands with predetermined functionality from combinatorial nucleic acid libraries. Since its discovery about 20 years ago the method has been instrumental in identifying a large number of aptamers that recognize targets of very different chemistry and molecular complexity. Although aptamers have been converted into sophisticated biomolecular tools for a diverse set of technologies, only a limited number of aptamers have been selected as binding reagents for parasites or parasite-derived molecules. Here the published examples of aptamers that target Leishmania-, Trypanosoma- and Plasmodia-specific molecules are reviewed.  相似文献   

9.
Aptamers are small nucleic acid ligands that bind to their targets with specificity and high affinity. They are generated by a combinatorial technology, known as SELEX. This in vitro approach uses iterative cycles of enrichment and amplification to select binders from nucleic acid libraries of high complexity. Here we combine SELEX with the yeast three-hybrid system in order to select for RNA aptamers with in vivo binding activity. As a target molecule, we chose the RNA recognition motif-containing RNA-binding protein Rrm4 from the corn pathogen Ustilago maydis. Rrm4 is an ELAV-like protein containing three N-terminal RNA recognition motifs (RRMs). It has been implicated in microtubule-dependent RNA transport during pathogenic development. After 11 SELEX cycles, four aptamer classes were identified. These sequences were further screened for their in vivo binding activity applying the yeast three-hybrid system. Of the initial aptamer classes only members of two classes were capable of binding in vivo. Testing representatives of both classes against Rrm4 variants mutated in one of the three RRM domains revealed that these aptamers interacted with the third RRM. Thus, the yeast three-hybrid system is a useful extension to the SELEX protocol for the identification and characterization of aptamers with in vivo binding activity.  相似文献   

10.
Aptamers, composed of single-stranded DNA or RNA oligonucleotides that interact with target molecules through a specific three-dimensional structure, are selected from pools of combinatorial oligonucleotide libraries. With their high specificity and affinity for target proteins, ease of synthesis and modification, and low immunogenicity and toxicity, aptamers are considered to be attractive molecules for development as anticancer therapeutics. Two aptamers - one targeting nucleolin and a second targeting CXCL12 - are currently undergoing clinical trials for treating cancer patients, and many more are under study. In this mini-review, we present the current clinical status of aptamers and aptamer-based cancer therapeutics. We also discuss advantages, limitations, and prospects for aptamers as cancer therapeutics. [BMB Reports 2015; 48(4): 234-237]  相似文献   

11.
Oligodeoxynucleotide libraries containing randomly incorporated bases are used to generate DNA aptamers by systematic evolution of ligands by exponential enrichment (SELEX). We predicted that combinatorial libraries with alternative base compositions might have innate properties different from the standard library containing equimolar A + C + G + T bases. In particular, we hypothesized that G-rich libraries would contain a higher proportion of quadruplex-forming sequences, which may impart desirable qualities, such as increased nuclease resistance and enhanced cellular uptake. Here, we report on 11 synthetic oligodeoxynucleotide libraries of various base combinations and lengths, with regard to their circular dichroism, stability in serum-containing medium, cellular uptake, protein binding and antiproliferative activity. Unexpectedly, we found that some G-rich libraries (composed of G + T or G + C nucleotides) strongly inhibited cancer cell growth while sparing non-malignant cells. These libraries had spectral features consistent with G-quadruplex formation, were significantly more stable in serum than inactive libraries and showed enhanced cellular uptake. Active libraries generally had strong protein binding, while the pattern of protein binding suggested that G/T and G/C libraries have distinct mechanisms of action. In conclusion, cancer-selective antiproliferative activity may be a general feature of certain G-rich oligodeoxynucleotides and is associated with quadruplex formation, nuclease resistance, efficient cellular uptake and protein binding.  相似文献   

12.
We developed an integrated method to identify aptamers with only 10 fixed nucleotides through ligation and removal of primer binding sites within the systematic evolution of ligands by exponential enrichment (SELEX) process. This Tailored-SELEX approach was validated by identifying a Spiegelmer (‘mirror-image aptamer’) that inhibits the action of the migraine-associated target calcitonin gene-related peptide 1 (α-CGRP) with an IC50 of 3 nM at 37°C in cell culture. Aptamers are oligonucleotide ligands that can be generated to bind to targets with high affinity and specificity. Stabilized aptamers and Spiegelmers have shown activity in vivo and may be used as therapeutics. Aptamers are isolated by in vitro selection from combinatorial nucleic acid libraries that are composed of a central randomized region and additional fixed primer binding sites with ~30–40 nt. The identified sequences are usually not short enough for efficient chemical Spiegelmer synthesis, post-SELEX stabilization of aptamers and economical production. If the terminal primer binding sites are part of the target recognizing domain, truncation of aptamers has proven difficult and laborious. Tailored-SELEX results in short sequences that can be tested more rapidly in biological systems. Currently, our identified CGRP binding Spiegelmer serves as a lead compound for in vivo studies.  相似文献   

13.
Terminal deoxynucleotidyl transferase (TdT) enzyme plays an integral part in the V(D)J recombination, allowing for the huge diversity in expression of immunoglobulins and T-cell receptors within lymphocytes, through their unique ability to incorporate single nucleotides into oligonucleotides without the need of a template. The role played by TdT in lymphocytes precursors found in early vertebrates is not known. In this paper, we demonstrated a new screening method that utilises TdT to form libraries of variable sized (vsDNA) libraries of polynucleotides that displayed binding towards protein targets. The extent of binding and size distribution of each vsDNA library towards their respective protein target can be controlled through the alteration of different reaction conditions such as time of reaction, nucleotide ratio and initiator concentration raising the possibility for the rational design of aptamers prior to screening. The new approach, allows for the screening of aptamers based on size as well as sequence in a single round, which minimises PCR bias. We converted the protein bound sequences to dsDNA using rapid amplification of variable ends assays (RAVE) and sequenced them using next generation sequencing. The resultant aptamers demonstrated low nanomolar binding and high selectivity towards their respective targets.  相似文献   

14.
Systematic evolution of ligands by exponential enrichment (SELEX) is a powerful in vitro selection process used for over 2 decades to identify oligonucleotide sequences (aptamers) with desired properties (usually high affinity for a protein target) from randomized nucleic acid libraries. In the case of RNA aptamers, several highly complex RNA libraries have been described with RNA sequences ranging from 71 to 81 nucleotides (nt) in length. In this study, we used high-throughput sequencing combined with bioinformatics analysis to thoroughly examine the nucleotide composition of the sequence pools derived from several selections that employed an RNA library (Sel2N20) with an abbreviated variable region. The Sel2N20 yields RNAs 51?nt in length, which unlike longer RNAs, are more amenable to large-scale chemical synthesis for therapeutic development. Our analysis revealed a consistent and early bias against inclusion of adenine, resulting in aptamers with lower predicted minimum free energies (ΔG) (higher structural stability). This bias was also observed in control, "nontargeted" selections in which the partition step (against the target) was omitted, suggesting that the bias occurred in 1 or more of the amplification and propagation steps of the SELEX process.  相似文献   

15.
Prion diseases are rare and obligatory fatal neurodegenerative disorders caused by the accumulation of a misfolded isoform (PrPSc) of the host-encoded prion protein (PrPc). Prophylactic and therapeutic regimens against prion diseases are very limited. To extend such strategies we selected peptide aptamers binding to PrP from a combinatorial peptide library presented on the Escherichia coli thioredoxin A (trxA) protein as a scaffold. In a yeast two-hybrid screen employing full-length murine PrP (aa 23-231) as a bait we identified three peptide aptamers that reproducibly bind to PrP. Treatment of prion-infected cells with recombinantly expressed aptamers added to the culture medium abolished PrPSc conversion with an IC50 between 350 and 700 nM. For expression in eukaryotic cells, peptide aptamers were fused to an N-terminal signal peptide for entry of the secretory pathway. The C terminus was modified by a glycosyl-phosphatidyl-inositol-(GPI) anchoring signal, a KDEL retention motif and the transmembrane and cytosolic domain of LAMP-I, respectively. These peptide aptamers retained their binding properties to PrPc and, depending on peptide sequence and C-terminal modification, interfered with endogenous PrPSc conversion upon expression in prion-infected cells. Notably, infection of cell cultures could be prevented by expression of KDEL peptide aptamers. For the first time, we show that trxA-based peptide aptamers can be targeted to the secretory pathway, thereby not losing the affinity for their target protein. Beside their inhibitory effect on prion conversion, these molecules could be used as fundament for rational drug design.  相似文献   

16.
抑制肿瘤坏死因子-α的DNA适配子的筛选与鉴定   总被引:3,自引:0,他引:3  
应用SELEX技术筛选能与TNF结合的DNA适配子。化学合成随机寡聚DNA库,以TNF为靶蛋白,经过12轮SELEX筛选,将所得产物克隆、测序。根据所测序列化学合成寡聚DNA适配子,用生物素_亲和素_辣根过氧化物酶显色系统检测适配子与TNF的结合活性;用鼠L929细胞检测适配子拮抗TNF活性。结果显示,所筛选到的寡聚DNA能与TNF-α高亲和力结合,并能在细胞培养中拮抗TNF-α的细胞毒活性。  相似文献   

17.
Aptamers are single-stranded DNA or RNA oligonucleotides selected in vitro from combinatorial libraries in a process called SELEX (Systematic Evolution of Ligands by EXponential Enrichment). Aptamers play a role of artificial nucleic acid ligands that can recognize and bind to various organic or inorganic target molecules with high specificity and affinity. They can discriminate even between closely related targets and can be easily chemically modified for radioactive, fluorescent and enzymatic labeling or biostability improvement. Aptamers can thus be considered as universal receptors that rival antibodies in diagnostics as a tool of molecular recognition. To date aptamers have been successively used instead of monoclonal antibodies in flow cytometry, immunochemical sandwich assays and in vivo imaging as well to detect wide range of small or large biomolecules.  相似文献   

18.
19.
20.
BACKGROUND: The systematic evolution of ligands by exponential enrichment (SELEX) technique is a combinatorial library approach in which DNA or RNA molecules (aptamers) are selected by their ability to bind their protein targets with high affinity and specificity, comparable to that of monoclonal antibodies. In contrast to antibodies conventionally selected in animals, aptamers are generated by an in vitro selection process, and can be directed against almost every target, including antigens like toxins or nonimmunogenic targets, against which conventional antibodies cannot be raised. METHODS: Aptamers are ideal candidates for cytomics, as they can be attached to fluorescent reporters or nanoparticles in order to study biological function by fluorescence microscopy, by flow cytometry, or to quantify the concentration of their target in biological fluids or cells using ELISA, RIA, and Western blot assays. RESULTS: We demonstrate the in vitro selection of anti-kinin B1 receptor aptamers that could be used to determine B1 receptor expression during inflammation processes. These aptamers specifically recognize their target in a Northern-Western blot assay, and bind to their target protein whenever they are exposed in the membrane. CONCLUSIONS: Currently, aptamers are linked to fluorescent reporters. We discuss here the present status and future directions concerning the use of the SELEX technique in cytomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号