首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three strains of new strictly anaerobic, Grampositive, non-sporeforming bacteria were isolated from various anoxic sediment samples with putrescine as sole carbon and energy source. Optimal growth in carbonate-buffered defined medium occurred at 37°C at pH 7.2–7.6. The DNA base ratio of strain NorPut1 was 29.6±1 mol% guanine plus cytosine. In addition to a surface layer and the peptidoglycan layer, the cell wall contained a second innermost layer with a periodic arrangement of subunits. All strains fermented putrescine to acetate, butyrate, and molecular hydrogen; the latter originated from both oxidative putrescine deamination and 4-aminobutyraldehyde oxidation. In defined mixed cultures with methanogens or homoacetogenic bacteria, methane or additional acetate were formed due to interspecies hydrogen transfer. Also 4-aminobutyrate and 4-hydroxybutyrate were fermented to acetate and butyrate, but no hydrogen was released from these substrates. No sugars, organic acids, other primary amines or amino acids were used as substrates. Neither sulfate, thiosulfate, sulfur, nitrate nor fumarate was reduced. Most of the enzymes involved in putrescine degradation could be demonstrated in cell-free extracts. A pathway of putrescine fermentation via 4-aminobutyrate and crotonyl-CoA with subsequent dismutation to acetate and butyrate is suggested.  相似文献   

2.
Three different defined cocultures of glycolatedegrading strictly anaerobic bacteria were isolated from enrichment cultures inoculated with freshwater sediment samples. Each culture contained a primary fermenting bacterium which used only glycolate as growth substrate. These cells were gram-positive, formed terminal oval spores, and did not contain cytochromes. Growth with glycolate was possible only in coculture with either a homoacetogenic bacterium or a hydrogen-utilizing methanogenic bacterium; the overall fermentation balance was either 4 glycolate 3 acetate + 2CO2, or 4 glycolate 3 CH4+5 CO2. These transformations indicate that glycolate was converted by the primary fermenting bacterium entirely to CO2 and reducing equivalents which were transferred to the partner organisms, probably through interspecies hydrogen transfer. The key enzymes of fermentative glycolate degradation were identified in cell-free extracts. An acetyl-CoA and ADP-dependent glyoxylate-converting enzyme activity, malic enzyme, pyruvate synthase, and methyl viologen-dependent hydrogenase were found at comparably high activities suggesting that these bacteria oxidize glycolate through a new pathway via malyl-CoA, and that ATP is synthesized by substrate-level phosphorylation, in a similar manner as found in a recently isolated glyoxylatefermenting anaerobe.  相似文献   

3.
Two strains of new strictly anaerobic, gramnegative bacteria were enriched and isolated from a freshwater (strain WoG13) and a saltwater (strain CuG11) anoxic sediment with glutarate as sole energy source. Strain WoG13 formed spores whereas strain CuG11 did not. Both strains were rod-shaped, motile bacteria growing in carbonate-buffered, sulfide-reduced mineral medium supplemented with 2% of rumen fluid. Both strains fermented glutarate to butyrate, isobutyrate, CO2, and small amounts of acetate. With methylsuccinate, the same products were formed, and succinate was fermented to propionate and CO2. No sugars, amino acids or other organic acids were used as substrates. Molar growth yields (Ys) were very small (0.5–0.9 g cell dry mass/mol dicarboxylate). Cells of strain WoG13 contained no cytochromes, and the DNA base ratio was 49.0±1.4 mol% guanine-plus-cytosine. Enzyme activities involved in glutarate degradation could bedemonstrated in cell-free extracts of strain WoG13. A pathway of glutarate fermentation via decarboxylation of glutaconyl-CoA to crotonyl-CoA is suggested which forms butyrate and partly isobutyrate by subsequent isomerization.  相似文献   

4.
Anaerobic degradation of hydroquinone was studied with the fermenting bacterium strain HQGö1. The rate of hydroquinone degradation by dense cell suspensions was dramatically accelerated by addition of NaHCO3. During fermentation of hydroquinone in the presence of 14C-Na2CO3 benzoate was formed as a labelled product, indicating an initial ortho-carboxylation of hydroquinone to gentisate. Gentisate was activated to the corresponding CoA-ester in a CoA ligase reaction at a specific activity of 0.15 mol x min–1 x mg protein–1. Gentisyl-CoA was reduced to benzoyl-CoA with reduced methyl viologen as electron donor by simultaneous reductive elimination of both the ortho and meta hydroxyl group. The specific activity of this novel gentisyl-CoA reductase was 17 nmol x min–1 x mg protein–1. Further degradation to acetate was catalyzed by enzymes which occur also in other bacteria degrading aromatic compounds via benzoyl-CoA.  相似文献   

5.
The syntrophically glycolate-fermenting bacterium in the methanogenic binary coculture FlGlyM was isolated in pure culture (strain FlGlyR) with glyoxylate as sole substrate. This strain disproportionated 12 glyoxylate to 7 glycolate, 10 CO2, and 3 hydrogen. Glyoxylate was oxidized via the malyl-CoA pathway. All enzymes of this pathway, i.e. malyl-CoA lyase/malate: CoA ligase, malic enzyme, and pyruvate synthase, were demonstrated in cell-free extracts. Glycolate dehydrogenase, hydrogenase, and ATPase, as well as menaquinones as potential electron carriers, were present in the membranes. Everted membrane vesicles catalyzed hydrogen-dependent glyoxylate reduction to glycolate [86–207 nmol min-1 (mg protein)-1] coupled to ATP synthesis from ADP and Pi [38–82 nmol min-1 (mg protein)-1]. ATP synthesis was abolished entirely by protonophores or ATPase inhibitors (up to 98 and 94% inhibition, respectively) indicating the involvement of proton-motive force in an electron transport phosphorylation driven by a new glyoxylate respiration with hydrogen as electron donor. Measured reaction rates in vesicle preparations revealed a stoichiometry of ATP formation of 0.2–0.5 ATP per glyoxylate reduced.Abbreviations BES 2-Bromoethanesulfonate - CCCP Carbonylcyanide m-chlorophenylhydrazone - DCCD N,N-Dicyclohexylcarbodiimide - DCPIP 2,6-Dichlorophenolindophenol - DTE Dithioerythritol - TCS 3,5,4,5-Tetrachlorosalicylanilide - SF 6847 3,5-Di-tert-butyl-4-hydroxybenzylidenemalonitrile  相似文献   

6.
With triethanolamine as sole source of energy and organic carbon, a strictly anaerobic, gram-positive, rod-shaped bacterium, strain LuTria 3, was isolated from sewage sludge and was assigned to the genus Acetobacterium on the basis of morphological and physiological properties. The G+C content of the DNA was 34.9±1.0 mol %. The new isolate fermented triethanolamine to acetate and ammonia. In cell-free extracts, a triethanolamine-degrading enzyme activity was detected that formed acetaldehyde as reaction product. Triethanolamine cleavage was stimulated 30-fold by added adenosylcobalamin (co-enzyme B12) and inhibited by cyanocobalamin or hydroxocobalamin. Ethanolamine ammonia lyase, acetaldehyde:acceptor oxidoreductase, phosphate acetyltransferase, acetate kinase, and carbon monoxide dehydrogenase were measured in cell-free extracts of this strain. Our results establish that triethanolamine is degraded by a corrinoid-dependent shifting of the terminal hydroxyl group to the subterminal carbon atom, analogous to a diol dehydratase reaction, to form an unstable intermediate that releases acetaldehyde. No anaerobic degradation of triethylamine was observed in similar enrichment assays.Abbreviation NTA nitrilotriacetate  相似文献   

7.
A denitrifying bacterium was isolated from a river sediment after enrichment on 3-chlorobenzoate under anoxic, denitrifying conditions. The bacterium, designated strain 3CB-1, degraded 3-chlorobenzoate, 3-bromobenzoate, and 3-iodobenzoate with stoichiometric release of halide under conditions supporting anaerobic growth by denitrification. The 3-halobenzoates and 3-hydroxybenzoate were used as growth substrates with nitrate as the terminal electron acceptor. The doubling time when growing on 3-halobenzoates ranged from 18 to 25 h. On agar plates with 1 mM 3-chlorobenzoate as the sole carbon source and 30 mM nitrate as the electron acceptor, strain 3CB-1 formed small colonies (1–2 mm in diameter) in 2 to 3 weeks. Anaerobic degradation of both 3-chlorobenzoate and 3-hydroxybenzoate was dependent on nitrate as an electron acceptor and resulted in nitrate reduction corresponding to the stoichiometric values for complete oxidation of the substrate to CO2. 3-Chlorobenzoate was not degraded in the presence of oxygen. 3-Bromobenzoate and 3-iodobenzoate were also degraded under denitrifying conditions with stoichiometric release of halide, but 3-fluorobenzoate was not utilized by the bacterium. Utilization of 3-chlorobenzoate was inducible, while synthesis of enzymes for 3-hydroxybenzoate degradation was constitutively low, but inducible. Degradation was specific to the position of the halogen substituent, and strain 3CB-1 did not utilize 2- or 4-chlorobenzoate. Received: 6 November 1998 / Accepted: 19 January 1999  相似文献   

8.
Triethanolamine (TEA) is converted into acetate and ammonia by a strictly anaerobic, gram-positive Acetobacterium strain LuTria3. Fermentation experiments with resting cell suspensions and specifically deuterated substrates indicate that in the acetate molecule the carboxylate and the methyl groups correspond to the alcoholic function and to its adjacent methylene group, respectively, of the 2-hydroxyethyl unit of TEA. A 1,2 shift of a hydrogen (deuterium) atom from -CH2-O- to =N-CH2- without exchange with the medium was observed. This fact gives evidence that a radical mechanism occurs involving the enzyme and/or coenzyme molecule as a hydrogen carrier. Such a biodegradation appears analogous to the conversion of 2-phenoxyethanol into acetate mediated by another strain of the anaerobic homoacetogenic bacterium Acetobacterium.  相似文献   

9.
A new rod-shaped, gram-negative, non-sporeforming, strictly anaerobic bacterium (strain HHQ7) was enriched and isolated from marine mud samples with hydroxyhydroquinone (1,2,4-trihydroxybenzene) as sole substrate. Strain HHQ7 fermented hydroxyhydroquinone, pyrogallol (1,2,3-trihydroxybenzene), phloroglucinol (1,3,5-trihydroxybenzene) and gallic acid (3,4,5-trihydroxybenzoate) to 3 mol acetate (plus 1 mol CO2 in the case of gallic acid) per mol of substrate. Resorcinol accumulated intermediately during growth on hydroxy-hydroquinone. No other aliphatic or aromatic substrates were utilized. Sulfate, sulfite, sulfur, nitrate, and fumarate were not reduced with hydroxyhydroquinone as electron donor. The strain grew in sulfide-reduced mineral medium supplemented with 7 vitamins. The DNA base ratio was 59% G+C. Strain HHQ7 is classified as a new species of the genus Pelobacter, P. massiliensis. Experiments with dense cell suspensions of hydroxyhydroquinone-and pyrogallol-grown cells showed different kinetics of hydroxyhydroquinone and pyrogallol degradation, as well as different patterns of resorcinol accumulation, indicating that these substrates are metabolized by different transhydroxylation reactions.  相似文献   

10.
The synthetic polyether polyethylene glycol (PEG) with a molecular weight of 20,000 was anaerobically degraded in enrichment cultures inoculated with mud of limnic and marine origins. Three strains (Gra PEG 1, Gra PEG 2, and Ko PEG 2) of rod-shaped, gram-negative, nonsporeforming, strictly anaerobic bacteria were isolated in mineral medium with PEG as the sole source of carbon and energy. All strains degraded dimers, oligomers, and polymers of PEG up to a molecular weight of 20,000 completely by fermentation to nearly equal amounts of acetate and ethanol. The monomer ethylene glycol was not degraded. An ethylene glycol-fermenting anaerobe (strain Gra EG 12) isolated from the same enrichments was identified as Acetobacterium woodii. The PEG-fermenting strains did not excrete extracellular depolymerizing enzymes and were inhibited by ethylene glycol, probably owing to a blocking of the cellular uptake system. PEG, some PEG-containing nonionic detergents, 1,2-propanediol, 1,2-butanediol, glycerol, and acetoin were the only growth substrates utilized of a broad variety of sugars, organic acids, and alcohols. The isolates did not reduce sulfate, sulfur, thiosulfate, or nitrate and were independent of growth factors. In coculture with A. woodii or Methanospirillum hungatei, PEGs and ethanol were completely fermented to acetate (and methane). A marine isolate is described as the type strain of a new species, Pelobacter venetianus sp. nov. Its physiology and ecological significance, as well as the importance and possible mechanism of anaerobic polyether degradation, are discussed.  相似文献   

11.
With resorcinol as sole source of energy and organic carbon, two stains of gram-negative, nitrate-reducing bacteria were isolated under strictly anaerobic conditions. Strain LuBRes1 was facultatively anaerobic and catalase- and superoxide dismutase-positive. This strain was affiliated with Alcaligenes denitrificans on the basis of substrate utilization spectrum and peritrichous flagellation. Strain LuFRes1 could grow only under anaerobic conditions with oxidized nitrogen compounds as electron acceptor. Cells were catalase-negative but superoxide dismutase-positive. Since this strain was apparently an obligate nitrate reducer, it could not be grouped with any existing genus. Resorcinol was completely oxidized to CO2 by both strains. Neither an enzyme activity reducing or hydrolyzing the resorcinol molecule, nor an acyl-CoA-synthetase activating resorcylic acids or benzoate was detected in cell-free extracts of cells grown with resorcinol. In dense cell suspensions, both strains produced a compound which was identified as 5-oxo-2-hexenoic acid by mass spectrometric analysis. This would indicate a direct, hydrolytic cleavage of the resorcinol nucleus without initial reduction.  相似文献   

12.
From anaerobic freshwater enrichment cultures with 3-hydroxybenzoate as sole substrate, a slightly curved rod-shaped bacterium was isolated in coculture with Desulfovibrio vulgaris as hydrogen scavenger. The new isolate degraded only 3-hydroxybenzoate or benzoate, and depended on syntrophic cooperation with a hydrogenoxidizing methanogen or sulfate reducer. 3-Hydroxybenzoate was degraded via reductive dehydroxylation to benzoate. With 2-hydroxybenzoate (salicylate), short coccoid rods were enriched from anaerobic freshwater mud samples, and were isolated in defined coculture with D. vulgaris. This isolate also fermented 3-hydroxybenzoate or benzoate in obligate syntrophy with a hydrogen-oxidizing anaerobe. The new isolates were both Gram-negative, non-sporeforming strict anaerobes. They fermented hydroxybenzoate or benzoate to acetate, CO2, and, presumably, hydrogen which was oxidized by the syntrophic partner organism. With hydroxybenzoates, but not with benzoate, Acetobacterium woodii could also serve as syntrophic partner. Other substrates such as sugars, alcohols, fatty or amino acids were not fermented. External electron acceptors such as sulfate, sulfite, nitrate, or fumarate were not reduced. In enrichment cultures with 4-hydroxybenzoate, decarboxylation to phenol was the initial step in degradation which finally led to acetate, methane and CO2.  相似文献   

13.
From sludge obtained from the sewage digester plant in Stuttgart-Möhringen a strictly anaerobic bacterium was enriched and isolated with methyl chloride as the energy source. The isolate, which was tentatively called strain MC, was nonmotile, gram-positive, and occurred as elongated cocci arranged in chains. Cells of strain MC formed about 3 mol of acetate per 4 mol of CH3Cl consumed, indicating that the organism was a homoacetogenic bacterium fermenting methyl chloride plus CO2 according to: The organism grew with 2–3% methyl chloride in the gas phase at a doubling time of near 30 h. Dichloromethane was not utilized. The bacterium also grew on carbon monoxide, H2 plus CO2, and methoxylated aromatic compounds. Optimal growth with methyl chloride was observed at 25°C and pH 7.3–7.7. The G+C-content of the DNA was 47.5±1.5%. The methyl chloride conversion appeared to be inducible, since H2 plus CO2-grown cells lacked this ability. From the morphological and physiological characteristics, the isolate could not be affiliated to a known species.  相似文献   

14.
15.
16.
A Gram-negative nitrate-reducing bacterium, strain Asl-3, was isolated from activated sludge with nitrate and 3-hydroxybenzoate as sole source of carbon and energy. The new isolate was facultatively anaerobic, catalase- and oxidase-positive and polarly monotrichously flagellated. In addition to nitrate, nitrite, N2O, and O2 served as electron acceptors. Growth with 3-hydroxybenzoate and nitrate was biphasic: nitrate was completely reduced to nitrite before nitrite reduction to N2 started. Benzoate, 3-hydroxybenzoate, 4-hydroxybenzoate, protocatechuate or phenyl-acetate served as electron and carbon source under aerobic and anaerobic conditions. During growth with excess carbon source, poly-beta-hydroxybutyrate was formed. These characteristics allow the affiliation of strain Asl-3 with the family Pseudomonadaceae. Analogous to the pathway of 4-hydroxybenzoate degradation in other bacteria, the initial step in anaerobic 3-hydroxybenzoate degradation by this organism was activation to 3-hydroxy-benzoyl-CoA in an ATP-consuming reaction. Cell extracts of 3-hydroxybenzoate-grown cells exhibited 3-hydroxybenzoyl-CoA synthetase activity of 190 nmol min-1 mg protein-1 as well as benzoyl-CoA synthetase activity of 86 nmol min-1 mg protein-1. A reductive dehydroxylation of 3-hydroxybenzoyl-CoA could not be demonstrated due to rapid hydrolysis of chemically synthesized 3-hydroxybenzoyl-CoA by cell extracts.  相似文献   

17.
Enrichments on succinate plus yeast extract under anoxic conditions from intertidal mud-flat sediments yielded cultures dominated by oval to round-ended rod-shaped cells. Strain 10succ1, obtained in pure culture, was characterized in detail. The non-motile cells possessed a gram-negative cell wall and did not form spores. Carbohydrates were fermented to formate, acetate, ethanol, and lactate. Succinate was decarboxylated to propionate. Other organic and amino acids were variously fermented to formate, acetate, propionate, and butyrate. Sulfur, sulfate, thiosulfate, and nitrate were not used as electron acceptors. Growth required the presence of yeast extract and at least 5 g/l NaCl, and was possible only in the absence of oxygen. No cytochromes were detected. The DNA base ratio was 40 mol% G+C. Phylogenetically, strain 10succ1 is closely related to Propionigenium modestum, as revealed by 16S rDNA analysis, but is physiologically distinct. Accordingly, strain 10succ1 (DSM 9537) is described as the type strain of a new species of the genus Propionigenium, P. maris sp. nov. Received: 12 January 1995 / Accepted: 24 February 1995  相似文献   

18.
Degradation of dipicolinic acid (pyridine-2,6-dicarboxylic acid) under strictly anaerobic conditions was studied in enrichment cultures from marine and freshwater sediments. In all cases, dipicolinic acid was completely degraded. From an enrichment culture from a marine sediment, a defined coculture of two bacteria was isolated. The dipicolinic acid-fermenting bacterium was a Gram-negative, non-sporeforming strictly anaerobic short rod which utilized dipicolinic acid as sole source of carbon, energy, and nitrogen, and fermented it to acetate, propionate, ammonia, and 2CO2. No other substrate was fermented. This bacterium could be cultivated only in coculture with another Gram-negative, non-sporeforming rod from the same enrichment culture which oxidized acetate to CO2 with fumarate, malate, or elemental sulfur as electron acceptor, similar to Desulfuromonas acetoxidans. Since this metabolic activity is not important in substrate degradation by the coculture, the basis of the dependence of the dipicolinic acid-degrading bacterium on the sulfur reducer may be sought in the assimilatory metabolism.  相似文献   

19.
In this paper we report the isolation and characterization of an anaerobic enrichment culture as well as of a Rhodococcus sp. strain 2 capable of degrading 3,4-dihaloanilines under nitrate reducing conditions. Using mass spectrometry several of the intermediates formed in the process of 3,4-dichloroaniline conversion were identified. Most interesting is the observation of reductive deamination and the formation of 1,2-dichlorobenzene as one of the intermediates. Using 19F NMR and fluorinated 3,4-dihaloaniline model substrates it was corroborated that reductive deamination of the anilines to give dihalobenzene intermediates represents a new initial step in the anaerobic microbial degradation of these halogenated anilines.  相似文献   

20.
Abstract

Anaerobic ruminal fungi may play an active role in fibre degradation as evidenced by the production of different fibrolytic enzymes in culture filtrate. In the present study, 16 anaerobic fungal strains were isolated from ruminal and faecal samples of sheep and goats. Based on their morphological characteristics they were identified as species of Anaeromyces, Orpinomyces, Piromyces and Neocallimastix. Isolated Neocallimastix sp. from goat rumen showed a maximum activity of CMCase (47.9 mIU ml?1) and filter paper cellulase (48.3 mIU ml?1), while Anaeromyces sp. from sheep rumen showed a maximum xylanolytic activity (48.3 mIU ml?1). The cellobiase activity for all the isolates ranged from 178.0 – 182.7 mIU ml?1. Based on the enzymatic activities, isolated Anaeromyces sp. from sheep rumen and Neocallimastix sp. from goat rumen were selected for their potential of in vitro fibre degradation. The highest in vitro digestibility of NDF (23.2%) and DM (34.4%) was shown for Neocallimastix sp. from goat rumen, as compared to the digestibility of NDF and DM in the control group of 17.5 and 25.0%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号