首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA-binding pyrrole-imidazole compounds were synthesized that target different Drosophila melanogaster satellites. Compound P31 specifically binds the GAGAA satellite V, and P9 targets the AT-rich satellites I and III. Remarkably, these drugs, when fed to developing Drosophila flies, caused gain- or loss-of-function phenotypes. While polyamide P9 (not P31) suppressed PEV of white-mottled flies (increased gene expression), P31 (not P9) mediated three well-defined, homeotic transformations (loss-of-function) exclusively in brown-dominant flies. Both phenomena are explained at the molecular level by chromatin opening (increased accessibility) of the targeted DNA satellites. Chromatin opening of satellite III by P9 is proposed to suppress PEV of white-mottled flies, whereas chromatin opening of satellite V by P31 is proposed to create an inopportune "sink" for the GAGA factor (GAF).  相似文献   

2.
The functions of DNA satellites of centric heterochromatin are difficult to assess with classical molecular biology tools. Using a chemical approach, we demonstrate that synthetic polyamides that specifically target AT-rich satellite repeats of Drosophila melanogaster can be used to study the function of these sequences. The P9 polyamide, which binds the X-chromosome 1.688 g/cm3 satellite III (SAT III), displaces the D1 protein. This displacement in turn results in a selective loss of HP1 and topoisomerase II from SAT III, while these proteins remain bound to the adjacent rDNA repeats and to other regions not targeted by P9. Conversely, targeting of (AAGAG)n satellite V repeats by the P31 polyamide results in the displacement of HP1 from these sequences, indicating that HP1 interactions with chromatin are sensitive to DNA-binding ligands. P9 fed to larvae suppresses the position-effect variegation phenotype of white-mottled adult flies. We propose that this effect is due to displacement of the heterochromatin proteins D1, HP1 and topoisomerase II from SAT III, hence resulting in stochastic chromatin opening and desilencing of the nearby white gene.  相似文献   

3.
4.
In embryonic cell-line derivative KCo of Drosophila melanogaster, the nucleolus, like most nucleoli, contains a small proportion of ribosomal DNA (1-2% of the total nucleolar DNA). The ribosomal DNA is virtually the only active gene set in the nucleolus and is found among long stretches of inactive supercoiled heterochromatic segments. We have demonstrated by use of a Feulgen-like ammine-osmium staining procedure that, depending on the state of growth, more or less fibres of decondensed DNA emanating from the intra-nucleolar chromatin (which is in continuity with the nucleolus-associated chromatin) ramify and unravel within the central nucleolar core to be transcribed. The nucleolus expands or contracts with the variation of activity and could belong to a supramolecular matricial structure such as is shown after extraction of the nuclei. After a long period of exposure to high doses of actinomycin D, the central nucleolar core became an homogeneous fibrous structure that could be interpreted as an aggregate of protein skeletal elements. The mechanism of repression and derepression of the nucleolar chromatin could thus be explained by a mechanism involving in part a sub-nucleolar structure. We propose a schematic organization of the nucleolar chromatin in KCo cells of Drosophila and discuss it in relation with other nucleolar organizations.  相似文献   

5.
6.
7.
A. R. Lohe  A. J. Hilliker    P. A. Roberts 《Genetics》1993,134(4):1149-1174
Heterochromatin in Drosophila has unusual genetic, cytological and molecular properties. Highly repeated DNA sequences (satellites) are the principal component of heterochromatin. Using probes from cloned satellites, we have constructed a chromosome map of 10 highly repeated, simple DNA sequences in heterochromatin of mitotic chromosomes of Drosophila melanogaster. Despite extensive sequence homology among some satellites, chromosomal locations could be distinguished by stringent in situ hybridizations for each satellite. Only two of the localizations previously determined using gradient-purified bulk satellite probes are correct. Eight new satellite localizations are presented, providing a megabase-level chromosome map of one-quarter of the genome. Five major satellites each exhibit a multichromosome distribution, and five minor satellites hybridize to single sites on the Y chromosome. Satellites closely related in sequence are often located near one another on the same chromosome. About 80% of Y chromosome DNA is composed of nine simple repeated sequences, in particular (AAGAC)(n) (8 Mb), (AAGAG)(n) (7 Mb) and (AATAT)(n) (6 Mb). Similarly, more than 70% of the DNA in chromosome 2 heterochromatin is composed of five simple repeated sequences. We have also generated a high resolution map of satellites in chromosome 2 heterochromatin, using a series of translocation chromosomes whose breakpoints in heterochromatin were ordered by N-banding. Finally, staining and banding patterns of heterochromatic regions are correlated with the locations of specific repeated DNA sequences. The basis for the cytochemical heterogeneity in banding appears to depend exclusively on the different satellite DNAs present in heterochromatin.  相似文献   

8.
Drosophila melanogaster embryos, whose mothers are homozygous for the gnu (a recessive lethal mutation with maternal effect) undergo DNA synthesis but are defective in nuclear division. This leads to formation of giant nuclei in the syncytial blastoderm. The interior spatial chromatin organization and possibility of obtaining polytene chromosomes in these nuclei was analysed. Partial conjugation of homologous chromatids, which is an evidence for cryptic polyteny in the gnu embryos nuclei, was shown.  相似文献   

9.
The two light nuclear satellites (PCsC1 = 1.672 and PCsC1 = 1.687) have been quantified in DNA isolated from the larvel imaginal discs and brains of Drosophila melanogaster with the genotypes X/O, X/X and X/Y. By comparing the results from these different genotypes, the amounts of the two satellites in the X and Y chromosomes and in the autosomes have been determined. The lightest satellite is not located to any appreciable extent in the X chromosome. The heterochromatic regions are not completely filled by these satellites. --Satellite DNA has also been quantified in DNA isolated from adults containing different genotypes. The two satellites are underreplicated to different extents. The apparent amount of underreplication for one of the satellites is different in different parts of the genome.  相似文献   

10.
11.
Nuclear formation in a Drosophila cell-free system   总被引:8,自引:0,他引:8  
A cell-free preparation obtained from 0- to 5-h-old Drosophila melanogaster embryos induces chromatin decondensation and nuclear formation from demembranated Xenopus sperm. Newly formed nuclei have a peripheral lamina, a double membrane, and structures resembling pore complexes. Indirect immunofluorescence analyses demonstrate the association of Drosophila lamins and DNA topoisomerase II with newly assembled nuclei.  相似文献   

12.
Heterochromatin protein 1 (HP1) is a conserved component of the highly compact chromatin of higher eukaryotic centromeres and telomeres. Cytogenetic experiments in Drosophila have shown that HP1 localization into this chromatin is perturbed in mutants for the origin recognition complex (ORC) 2 subunit. ORC has a multisubunit DNA-binding activity that binds origins of DNA replication where it is required for origin firing. The DNA-binding activity of ORC is also used in the recruitment of the Sir1 protein to silence nucleation sites flanking silent copies of the mating-type genes in Saccharomyces cerevisiae. A fraction of HP1 in the maternally loaded cytoplasm of the early Drosophila embryo is associated with a multiprotein complex containing Drosophila melanogaster ORC subunits. This complex appears to be poised to function in heterochromatin assembly later in embryonic development. Here we report the identification of a novel component of this complex, the HP1/ORC-associated protein. This protein contains similarity to DNA sequence-specific HMG proteins and is shown to bind specific satellite sequences and the telomere-associated sequence in vitro. The protein is shown to have heterochromatic localization in both diploid interphase and mitotic chromosomes and polytene chromosomes. Moreover, the gene encoding HP1/ORC-associated protein was found to display reciprocal dose-dependent variegation modifier phenotypes, similar to those for mutants in HP1 and the ORC 2 subunit.  相似文献   

13.
14.
15.
16.
The eukaryotic DNA polymerase processivity factor, proliferating cell nuclear antigen, is an essential component in the DNA replication and repair machinery. In Drosophila melanogaster, we cloned a second PCNA cDNA that differs from that encoded by the gene mus209 (for convenience called DmPCNA1 in this article). The second PCNA cDNA (DmPCNA2) encoded a 255 amino acid protein with 51.7% identity to DmPCNA1, and was ubiquitously expressed during Drosophila development. DmPCNA2 was localized in nuclei as a homotrimeric complex and associated with Drosophila DNA polymerase delta and epsilonin vivo. Treatment of cells with methyl methanesulfonate or hydrogen peroxide increased the amount of both DmPCNA2 and DmPCNA1 associating with chromatin, whereas exposure to UV light increased the level of association of only DmPCNA1. Our observations suggest that DmPCNA2 may function as an independent sliding clamp of DmPCNA1 when DNA repair occurs.  相似文献   

17.
18.
Chd1- and ISWI-type chromatin remodelers can sense extranucleosomal DNA and preferentially shift nucleosomes toward longer stretches of available DNA. The DNA-binding domains of these chromatin remodelers are believed to be responsible for sensing extranucleosomal DNA and are needed for robust sliding, but it is unclear how these domains contribute to directional movement of nucleosomes. Here, we show that the DNA-binding domain of Chd1 is not essential for nucleosome sliding but is critical for centering mononucleosomes on short DNA fragments. Remarkably, nucleosome centering was achieved by replacing the native DNA-binding domain of Chd1 with foreign DNA-binding domains of Escherichia coli AraC or Drosophila melanogaster engrailed. Introducing target DNA sequences recognized by the foreign domains enabled the remodelers to rapidly shift nucleosomes toward these binding sites, demonstrating that these foreign DNA-binding domains dictated the direction of sliding. Sequence-directed sliding occluded the target DNA sequences on the nucleosome enough to promote release of the remodeler. Target DNA sequences were highly stimulatory at multiple positions flanking the nucleosome and had the strongest influence when separated from the nucleosome by 23 or fewer base pairs. These results suggest that the DNA-binding domain's affinity for extranucleosomal DNA is the key determinant for the direction that Chd1 shifts the nucleosome.  相似文献   

19.
D Brutlag  K Fry  T Nelson  P Hung 《Cell》1977,10(3):509-519
Hybrid plasmid molecules containing tandemly repeated Drosophila satellite DNA were constructed using a modification of the (dA)-(dT) homopolymer procedure of Lobban and Kaiser (1973). Recombinant plasmids recovered after transformation of recA bacteria contained 10% of the amount of satellite DNA present in the transforming molecules. The cloned plasmids were not homogenous in size. Recombinant plasmids isolated from a single colony contained populations of circular molecules which varied both in the length of the satellite region and in the poly(dA)-(dt) regions linking satellite and vector. While subcloning reduced the heterogeneity of these plasmid populations, continued cell growth caused further variations in the size of the repeated regions. Two different simple sequence satellites of Drosophila melanogaster (1.672 and 1.705 g/cm3) were unstable in both recA and recBC hosts and in both pSC101 and pCR1 vectors. We propose that this recA-independent instability of tandemly repeated sequences is due to unequal intramolecular recombination events in replicating DNA molecules, a mechanism analogous to sister chromatid exchange in eucaryotes.  相似文献   

20.
To gain a better understanding of DNA replication-coupled chromatin assembly, we have isolated the cDNA encoding the smallest (apparent molecular mass, 55 kDa; termed p55) subunit of Drosophila melanogaster chromatin assembly factor 1 (dCAF-1), a multisubunit protein that is required for the assembly of nucleosomes onto newly replicated DNA in vitro. The p55 polypeptide comprises seven WD repeat motifs and is homologous to the mammalian RbAp48 protein, which is associated with the HD1 histone deacetylase. dCAF-1 was immunopurified by using affinity-purified antibodies against p55; the resulting dCAF-1 preparation possessed the four putative subunits of dCAF-1 (p180, p105, p75, and p55) and was active for DNA replication-coupled chromatin assembly. Moreover, dCAF-1 activity was specifically depleted with antibodies against p55. Thus, p55 is an integral component of dCAF-1. p55 is localized to the nucleus and is present throughout Drosophila development. Consistent with the homology between p55 and the HD1-associated RbAp48 protein, histone deacetylase activity was observed to coimmunoprecipitate specifically with p55 from a Drosophila nuclear extract. Furthermore, a fraction of the p55 protein becomes associated with the newly assembled chromatin following DNA replication. These findings collectively suggest that p55 may function as a link between DNA replication-coupled chromatin assembly and histone modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号