首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adaptive (or stationary-phase) mutation is a group of phenomena in which mutations appear to occur more often when selected than when not. They may represent cellular responses to the environment in which the genome is altered to allow survival. The best-characterized assay system and mechanism is reversion of a lac allele on an F' sex plasmid in Escherichia coli, in which the stationary-phase mutability requires homologous recombination functions. A key issue has concerned whether the recombination-dependent mutation mechanism is F' specific or is general. Hypermutation of chromosomal genes occurs in association with adaptive Lac(+) mutation. Here we present evidence that the chromosomal hypermutation is promoted by recombination. Hyperrecombinagenic recD cells show elevated chromosomal hypermutation. Further, recG mutation, which promotes accumulation of recombination intermediates proposed to prime replication and mutation, also stimulates chromosomal hypermutation. The coincident mutations at lac (on the F') and chromosomal genes behave as independent events, whereas coincident mutations at lac and other F-linked sites do not. This implies that transient covalent linkage of F' and chromosomal DNA (Hfr formation) does not underlie chromosomal mutation. The data suggest that recombinational stationary-phase mutation occurs in the bacterial chromosome and thus can be a general strategy for programmed genetic change.  相似文献   

2.
Stationary-phase mutation in microbes can produce selected (''adaptive'') mutants preferentially. In one system, this occurs via a distinct, recombination-dependent mechanism. Two points of controversy have surrounded these adaptive reversions of an Escherichia coli lac mutation. First, are the mutations directed preferentially to the selected gene in a Lamarckian manner? Second, is the adaptive mutation mechanism specific to the F plasmid replicon carrying lac? We report that lac adaptive mutations are associated with hypermutation in unselected genes, in all replicons in the cell. The associated mutations have a similar sequence spectrum to the adaptive reversions. Thus, the adaptive mutagenesis mechanism is not directed to the lac genes, in a Lamarckian manner, nor to the F'' replicon carrying lac. Hypermutation was not found in non-revertants exposed to selection. Therefore, the genome-wide hypermutation underlying adaptive mutation occurs in a differentiated subpopulation. The existence of mutable subpopulations in non-growing cells is important in bacterial evolution and could be relevant to the somatic mutations that give rise to cancers in multicellular organisms.  相似文献   

3.
F plasmids use surface exclusion to prevent the redundant entry of additional F plasmids during active growth of the host cells. This mechanism is relaxed during stationary phase and nonlethal selections, allowing homosexual redundant plasmid transfer. Homosexual redundant transfer occurs in stationary-phase liquid cultures, within nongrowing populations on solid media, and on media lacking a carbon source. We examined the relationship between homosexual redundant transfer, which occurs between F+ hosts, and reversion of a plasmid-encoded lac mutant allele, lacI33omegalacZ. Sodium dodecyl sulfate (SDS) and mutations that prevent normal transfer to F- cells reduced redundant transfer and selection-induced reversion of the lacI33omegalacZ allele. A recA null mutation reduced redundant transfer and selection-induced reversion of the lacI33omegalacZ mutation. Conversely, a recD null mutation increased redundant transfer and selection-induced reversion of the lacI33omegalacZ allele. These results suggest an explanation for why SDS and these mutations affect reversion of the plasmid lacI33omegalacZ allele. However, a direct causal relationship between transfer and reversion remains to be established. These results suggest that Rec proteins play an active role in redundant transfer and/or that redundant transfer is regulated with the activation of recombination. Redundant homosexual plasmid transfer during a period of stress may represent a genetic response that facilitates evolution of plasmid-encoded functions through mutation, recombination, reassortment, and dissemination of genetic elements present in the populations.  相似文献   

4.
适应性突变的遗传学特征   总被引:1,自引:1,他引:0  
张汉波  沙涛  程立忠  丁骅孙 《遗传》2002,24(3):395-188
基于大肠杆菌FC40菌株的研究结果表明,适应性突变依赖RecBCD重组途径的酶,要求SOS反应的部分基因功能,lac+回复突变序列都是在单核苷酸短重复序列处的一个碱基缺失。有证据表明有的适应性突变来自一个或多个暂时性的超突变的细胞亚群,它们的基因组发生大量的突变,转座子高频丢失。产生这种暂时性的超突变的增变子可能是因为细胞的MMR活性暂时不足,或是因错误翻译产生丧失了校读活性的DNA聚合酶III。其他一些研究系统虽然得到了一些同FC40菌株不一致的结论,但所有实验证据都表明,在饥饿等环境胁迫因子作用下,非生长或缓慢生长的细胞可以产生突变,这种突变具有生长依赖的自发突变所不同的一些遗传学特征。 Abstract:The research based on the Escherichia coli FC40 showed that adaptive mutations required the enzymes of RecBCD recombination pathway and some unknown proteins of SOS response,and the mutation spectrum of lac+ revertants is single-base deletions in the small mononucleotide repeats.Some evidence showed that the revertants with adaptive mutations partly come from one (or some) subset of transient hypermutable subpopulation of cells,in which high frequently losing of transposons and genome-wide mutations were observed.It was suggested that this kind of transient hypermutability may be due to the transient deficient activity of mismatch repair (MMR) system,or a defective epsilon unit of DNA polymerase III generated by mistranslation.Although other systems demonstrated some different mechanisms from FC40,all research works suggested that,adaptive mutations occurred in nondividing or nongrowing cells under environmental stresses,for example,starvation,displayed different genetic features from growth-dependent spontaneous mutation.  相似文献   

5.
Molecular handles on adaptive mutation   总被引:10,自引:0,他引:10  
In one experimental system, several handles on the molecular mechanism of apparent adaptive mutation have emerged. The system is reversion of a lac frame-shift mutation in Escherichia coli . The molecular handles include a requirement for homologous recombination; the implication of DNA double-strand breaks as a molecular intermediate; a unique sequence spectrum of −1 deletions in mononucleotide repeats which implies polymerase errors, and also implies a failure of post-synthesis mismatch repair on those errors; and the involvement of sexual functions at some stage of the process. These molecular handles are revealing an unexpected new mechanism of mutagenesis.  相似文献   

6.
To isolate strains with new recA mutations that differentially affect RecA protein functions, we mutagenized in vitro the recA gene carried by plasmid mini-F and then introduced the mini-F-recA plasmid into a delta recA host that was lysogenic for prophage phi 80 and carried a lac duplication. By scoring prophage induction and recombination of the lac duplication, we isolated new recA mutations. A strain carrying mutation recA1734 (Arg-243 changed to Leu) was found to be deficient in phi 80 induction but proficient in recombination. The mutation rendered the host not mutable by UV, even in a lexA(Def) background. Yet, the recA1734 host became mutable upon introduction of a plasmid encoding UmuD*, the active carboxyl-terminal fragment of UmuD. Although the recA1734 mutation permits cleavage of lambda and LexA repressors, it renders the host deficient in the cleavage of phi 80 repressor and UmuD protein. Another strain carrying mutation recA1730 (Ser-117 changed to Phe) was found to be proficient in phi 80 induction but deficient in recombination. The recombination defect conferred by the mutation was partly alleviated in a cell devoid of LexA repressor, suggesting that, when amplified, RecA1730 protein is active in recombination. Since LexA protein was poorly cleaved in the recA1730 strain while phage lambda was induced, we conclude that RecA1730 protein cannot specifically mediate LexA protein cleavage. Our results show that the recA1734 and recA1730 mutations differentially affect cleavage of various substrates. The recA1730 mutation prevented UV mutagenesis, even upon introduction into the host of a plasmid encoding UmuD* and was dominant over recA+. With respect to other RecA functions, recA1730 was recessive to recA+. This demonstrates that RecA protein has an additional role in mutagenesis beside mediating the cleavage of LexA and UmuD proteins.  相似文献   

7.
8.
When the Lac- strain of Escherichia coli, FC40, is incubated with lactose as its sole carbon and energy source, Lac+ revertants arise at a constant rate, a phenomenon known as adaptive mutation. Two alternative models for adaptive mutation have been proposed: (i) recombination-dependent mutation, which specifies that recombination occurring in nongrowing cells stimulates error-prone DNA synthesis, and (ii) amplification-dependent mutation, which specifies that amplification of the lac region and growth of the amplifying cells creates enough DNA replication to produce mutations at the normal rate. Here, we examined several of the predictions of the amplification-dependent mutation model and found that they are not fulfilled. First, inhibition of adaptive mutation by a gene that is toxic when overexpressed does not depend on the proximity of the gene to lac. Second, mutation at a second locus during selection for Lac+ revertants is also independent of the proximity of the locus to lac. Third, mutation at a second locus on the episome occurs even when the lac allele under selection is on the chromosome. Our results support the hypothesis that most Lac+ mutants that appear during lactose selection are true revertants that arise in a single step from Lac- cells, not from a population of growing or amplifying precursor cells.  相似文献   

9.
A trp-lac fusion strain of Escherichia coli in which the lac structural genes are part of the tryptophan operon has been used to isolate trp regulatory mutants. This was accomplished by isolating lac(+) colonies on either lactose-minimal agar or lactose-MacConkey indicator agar. Seventy-seven of 78 lac(+) isolates contained mutations which mapped near the ara locus and most of these isolates were found to be 5-methyltryptophan-resistant after introduction of an F-trp episome. The lac(+) phenotypes of these 77 isolates were therefore probably the result of trpR(-) mutations. The one remaining isolate carried a mutation which was not part of the trp regulatory system.  相似文献   

10.
Adaptive mutation to Lac(+) in Escherichia coli strain FC40 depends on recombination functions and is enhanced by the expression of conjugal functions. To test the hypothesis that the conjugal function that is important for adaptive mutation is the production of a single-strand nick at the conjugal origin, we supplied an exogenous nicking enzyme, the gene II protein (gIIp) of bacteriophage f1, and placed its target sequence near the lac allele. When both gIIp and its target site were present, adaptive mutation was stimulated three- to fourfold. Like normal adaptive mutations, gIIp-induced mutations were recA(+) and ruvC(+) dependent and were mainly single-base deletions in runs of iterated bases. In addition, gIIp with its target site could substitute for conjugal functions in adaptive mutation. These results support the hypothesis that nicking at the conjugal origin initiates the recombination that produces adaptive mutations in this strain of E. coli, and they suggest that nicking may be the only conjugal function required for adaptive mutation.  相似文献   

11.
Adaptive point mutation and amplification are induced responses to environmental stress, promoting genetic changes that can enhance survival. A specialized adaptive mutation mechanism has been documented in one Escherichia coli assay, but its enzymatic basis remained unclear. We report that the SOS-inducible, error-prone DNA polymerase (pol) IV, encoded by dinB, is required for adaptive point mutation in the E. coli lac operon. A nonpolar dinB mutation reduces adaptive mutation frequencies by 85% but does not affect adaptive amplification, growth-dependent mutation, or survival after oxidative or UV damage. We show that pol IV, together with the major replicase, pol III, can account for all adaptive point mutations at lac. The results identify a role for pol IV in inducible genetic change.  相似文献   

12.
Escherichia coli cells with mutations in recBC genes are defective for the main RecBCD pathway of recombination and have severe reductions in conjugational and transductional recombination, as well as in recombinational repair of double-stranded DNA breaks. This phenotype can be corrected by suppressor mutations in sbcB and sbcC(D) genes, which activate an alternative RecF pathway of recombination. It was previously suggested that sbcB15 and DeltasbcB mutations, both of which inactivate exonuclease I, are equally efficient in suppressing the recBC phenotype. In the present work we reexamined the effects of sbcB15 and DeltasbcB mutations on DNA repair after UV and gamma irradiation, on conjugational recombination, and on the viability of recBC (sbcC) cells. We found that the sbcB15 mutation is a stronger recBC suppressor than DeltasbcB, suggesting that some unspecified activity of the mutant SbcB15 protein may be favorable for recombination in the RecF pathway. We also showed that the xonA2 mutation, a member of another class of ExoI mutations, had the same effect on recombination as DeltasbcB, suggesting that it is an sbcB null mutation. In addition, we demonstrated that recombination in a recBC sbcB15 sbcC mutant is less affected by recF and recQ mutations than recombination in recBC DeltasbcB sbcC and recBC xonA2 sbcC strains is, indicating that SbcB15 alleviates the requirement for the RecFOR complex and RecQ helicase in recombination processes. Our results suggest that two types of sbcB-sensitive RecF pathways can be distinguished in E. coli, one that is activated by the sbcB15 mutation and one that is activated by sbcB null mutations. Possible roles of SbcB15 in recombination reactions in the RecF pathway are discussed.  相似文献   

13.
Rapid repeated cloning of mutant lac repressor genes   总被引:14,自引:0,他引:14  
R M Schaaper  B N Danforth  B W Glickman 《Gene》1985,39(2-3):181-189
We have developed a procedure to efficiently recover lac repressor mutations (lacI-) from F'lac onto a single-stranded M13 phage vector. The recovery is based on homologous recombination between F'lac and an M13lac vector. This vector, mRS81, carries the entire Escherichia coli lacI gene as well as the adjacent alpha-complementation region of the lacZ gene, inserted in the AvaI site of the M13 ori region. It also carries a single point mutation in lacZ- alpha which abolishes its alpha-complementing ability. Recovery of lacI- genes from F is based on the conversion of this lacI+Z- alpha phage to lacI-Z+ alpha by recombination with F'lacI-Z+. This double exchange restores its alpha-complementing ability in the absence of any inducer of the lac operon. Detection requires a lacI- alpha-complementation host, which was also constructed in this study. The procedure was developed to obtain rapid nucleotide sequence information on large collections of lacI mutants for the purpose of studying mutational mechanisms and specificities.  相似文献   

14.
Recombination of phage lambda attachment sites occurs by sequential exchange of the DNA strands at two specific locations. The first exchange produces a Holliday structure, and the second resolves it to recombinant products. Heterology for base substitution mutations in the region between the two strand exchange points (the overlap region) reduces recombination; some mutations inhibit the accumulation of Holliday structures, others inhibit their resolution to recombinant products. To see if heterology also alters the location of the strand exchange points, we determined the segregation pattern of three single and one multiple base pair substitution mutations of the overlap region in crosses with wild type sites. The mutations are known to differ in the severity of their recombination defect and in the stage of strand exchange they affect. The three single mutations behaved similarly: each segregated into both products of recombination, and the two products of a single crossover were frequently nonreciprocal in the overlap region. In contrast, the multiple mutation preferentially segregated into one of the two recombinant products, and the two products of a single crossover appeared to be fully reciprocal. The simplest explanation of the segregation pattern of the single mutations is that strand exchanges occur at the normal locations to produce recombinants with mismatched base pairs that are frequently repaired. The segregation pattern of the multiple mutation is consistent with the view that both strand exchanges usually occur to one side of the mutant site. We suggest that the segregation pattern of a particular mutation is determined by which stage of strand exchange it inhibits and by the severity of the inhibition.  相似文献   

15.
When two, directly-repeated copies of the origin of transfer (oriT) of the conjugatively mobilizable, broad host-range plasmid R1162 are cloned into bacteriophage M13mp9 DNA, they undergo recombination in the presence of one of the R1162-encoded proteins required for mobilization [Meyer, R. (1989) J. Bacteriol., 171, 799-806]. Mutations in the outer arm of the inverted repeat within oriT inhibit this recombination. These mutations also affect a late step in transfer. We propose that recombination on the phage DNA models the processing of single-stranded DNA after entry into a recipient cell. The two, directly-repeated oriTs are not equivalent during the recombination reaction, because they are differently affected by the outer-arm mutations. A mutation was also isolated that reduces the specificity of the cleavage site in one of the two oriTs. Together, the results with the mutations suggest that phage recombinants can form only when the first cleavage occurs at one of the two oriTs. This is followed by the resulting free 3' end joining to the 5' end at the cleavage site of the other oriT.  相似文献   

16.
Recombination between F42lac and lambda plac5 is typically 20- to 50-fold more efficient than recombination between chromosomal lac and lambda plac5. This enhancement of recombination is recBCD-dependent and requires the expression of genes from the tra regulon of the F factor. Also required is oriT, the origin of F factor conjugational transfer, which must be located in-cis to the cellular copy of lac. In this study we show that enhanced recombination is not supported by an oriT point mutant that reduces oriT function in conjugation. We also present evidence that the activation of oriT for recombination enhancement involves the same strand-specific nick that is required for conjugal DNA transfer. Although it is thought that the role of oriT in recombination enhancement is related to the facilitated entry of RecBCD enzyme into the DNA duplex, we were unable to detect any double-strand breakage at oriT.  相似文献   

17.
Recombination of phage λ attachment sites occurs by sequential exchange of the DNA strands at two specific locations. The first exchange produces a Holliday structure, and the second resolves it to recombinant products. Heterology for base substitution mutations in the region between the two strand exchange points (the overlap region) reduces recombination; some mutations inhibit the accumulation of Holliday structures, others inhibit their resolution to recombinant products. To see if heterology also alters the location of the strand exchange points, we determined the segregation pattern of three single and one multiple base pair substitution mutations of the overlap region in crosses with wild type sites. The mutations are known to differ in the severity of their recombination defect and in the stage of strand exchange they affect. The three single mutations behaved similarly: each segregated into both products of recombination,, and the two products of a single crossover were frequently nonreciprocal in the overlap region. In contrast, the multiple mutation preferentially segregated into one of the two recombinant products, and the two products of a single crossover appeared to be fully reciprocal. The simplest explanation of the segregation pattern of the single mutations is that strand exchanges occur at the normal locations to produce recombinants with mismatched base pairs that are frequently repaired. The segregation pattern of the multiple mutation is consistent with the view that both strand exchanges usually occur to one side of the mutant site. We suggest that the segregation pattern of a particular mutation is determined by which stage of strand exchange it inhibits and by the severity of the inhibition.  相似文献   

18.
Plasmid F'(128) was formed by an exchange between chromosomal Rep sequences that placed lac near dinB between many pairs of Rep sequences. Plasmid F'(128) is critical for selection-enhanced lac reversion (adaptive mutation), which requires prior lac amplification. The structure of F'(128) supports the idea that amplification is initiated by Rep-Rep recombination and that general mutagenesis requires coamplification of dinB (error-prone polymerase) with lac.  相似文献   

19.
Roth JR  Kofoid E  Roth FP  Berg OG  Seger J  Andersson DI 《Genetics》2003,163(4):1483-1496
In the lac adaptive mutation system of Cairns, selected mutant colonies but not unselected mutant types appear to arise from a nongrowing population of Escherichia coli. The general mutagenesis suffered by the selected mutants has been interpreted as support for the idea that E. coli possesses an evolved (and therefore beneficial) mechanism that increases the mutation rate in response to stress (the hypermutable state model, HSM). This mechanism is proposed to allow faster genetic adaptation to stressful conditions and to explain why mutations appear directed to useful sites. Analysis of the HSM reveals that it requires implausibly intense mutagenesis (10(5) times the unselected rate) and even then cannot account for the behavior of the Cairns system. The assumptions of the HSM predict that selected revertants will carry an average of eight deleterious null mutations and thus seem unlikely to be successful in long-term evolution. The experimentally observed 35-fold increase in the level of general mutagenesis cannot account for even one Lac(+) revertant from a mutagenized subpopulation of 10(5) cells (the number proposed to enter the hypermutable state). We conclude that temporary general mutagenesis during stress is unlikely to provide a long-term selective advantage in this or any similar genetic system.  相似文献   

20.
P Sch?r  J Kohli 《The EMBO journal》1994,13(21):5212-5219
The ade6-M26 mutation of Schizosaccharomyces pombe stimulates intragenic and intergenic meiotic recombination. M26 is a single base pair change creating a specific heptanucleotide sequence that is crucial for recombination hotspot activity. This sequence is recognized by proteins that may facilitate rate-limiting steps of recombination at the ade6 locus. To start the elucidation of the intermediate DNA structures formed during M26 recombination, we have analyzed the aberrant segregation patterns of two G to C transversion mutations flanking the heptanucleotide sequence in crosses homozygous for M26. At both sites the level of post-meiotic segregation is typical for G to C transversion mutations in S. pombe in general. Quantitative treatment of the data provides strong evidence for heteroduplex DNA being the major recombination intermediate at the M26 site. We can now exclude a double-strand gap repair mechanism to account for gene conversion across the recombination hotspot. Furthermore, the vast majority (> 95%) of the heteroduplexes covering either of the G to C transversion sites are produced by transfer of the transcribed DNA strand. These results are consistent with ade6-M26 creating an initiation site for gene conversion by the introduction of a single-strand or a double-strand break in its vicinity, followed by transfer of the transcribed DNA strands for heteroduplex DNA formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号