首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have designed and characterized two new replication-competent avian sarcoma/leukosis virus-based retroviral vectors with amphotropic and ecotropic host ranges. The amphotropic vector RCASBP-M2C(797-8), was obtained by passaging the chimeric retroviral vector RCASBP-M2C(4070A) (6) in chicken embryos. The ecotropic vector, RCASBP(Eco), was created by replacing the env-coding region in the retroviral vector RCASBP(A) with the env region from an ecotropic murine leukemia virus. It replicates efficiently in avian DFJ8 cells that express murine ecotropic receptor. For both vectors, permanent cell lines that produce viral stocks with titers of about 5 x 10(6) CFU/ml on mammalian cells can be easily established by passaging transfected avian cells. Some chimeric viruses, for example, RCASBP(Eco), replicate efficiently without modifications. For those chimeric viruses that do require modification, adaptation by passage in vitro or in vivo is a general strategy. This strategy has been used to prepare vectors with altered host range and could potentially be used to develop vectors that would be useful for targeted gene delivery.  相似文献   

2.
International regulations prescribe that the absence of avian leucosis viruses (ALV) in avian live virus vaccines has to be demonstrated. Primary chicken embryo fibroblasts (CEF) from special SPF chicken lines are normally used for detection of ALV. The suitability of the DF-1 cell line for ALV-detection, as alternative for primary CEF, was studied in three types of experiments: (1) in titration experiments without cell passage, (2) in experiments with passages in cell cultures according to European Pharmacopoeia requirements, and (3) in experiments with commercial live avian vaccines that had been spiked with known amounts of ALV. In all tests the sensitivity of ALV-A and ALV-J detections on DF-1 cells was at least as high as on primary CEF. The sensitivity of ALV-B detection was always superior when DF-1 cells were used. ALV were detected earlier in all comparative tests when DF-1 cells were used. ALV-A, ALV-B and ALV-J all induced CPE on DF-1 cells, whereas no clear CPE was seen on CEF-cells. For reasons of sensitivity, standardisation as well as reduction of animal use, the data support the use of DF-1 cells to monitor absence of ALV in vaccine virus seed lots or finished products.  相似文献   

3.
The interactions between the subgroup A avian leukosis virus [ALV(A)] envelope glycoproteins and soluble forms of the ALV(A) receptor Tva were analyzed both in vitro and in vivo by quantitating the ability of the soluble Tva proteins to inhibit ALV(A) entry into susceptible cells. Two soluble Tva proteins were tested: the 83-amino-acid Tva extracellular region fused to two epitope tags (sTva) or fused to the constant region of the mouse immunoglobulin G heavy chain (sTva-mIgG). Replication-competent ALV-based retroviral vectors with subgroup B or C env were used to deliver and express the two soluble tv-a (stva) genes in avian cells. In vitro, chicken embryo fibroblasts or DF-1 cells expressing sTva or sTva-mIgG proteins were much more resistant to infection by ALV(A) ( approximately 200-fold) than were control cells infected by only the vector. The antiviral effect was specific for ALV(A), which is consistent with a receptor interference mechanism. The antiviral effect of sTva-mIgG was positively correlated with the amount of sTva-mIgG protein. In vivo, the stva genes were delivered and expressed in line 0 chicken embryos by the ALV(B)-based vector RCASBP(B). Viremic chickens expressed relatively high levels of stva and stva-mIgG RNA in a broad range of tissues. High levels of sTva-mIgG protein were detected in the sera of chickens infected with RCASBP(B)stva-mIgG. Viremic chickens infected with RCASBP(B) alone, RCASBP(B)stva, or RCASBP(B)stva-mIgG were challenged separately with ALV(A) and ALV(C). Both sTva and sTva-mIgG significantly inhibited infection by ALV(A) (95 and 100% respectively) but had no measurable effect on ALV(C) infection. The results of this study indicate that a soluble receptor can effectively block infection of at least some retroviruses and demonstrates the utility of the ALV experimental system in characterizing the mechanism(s) of viral entry.  相似文献   

4.
Passage of 4070A murine leukemia virus (MuLV) in D17 cells resulted in a G-to-R change at position 100 within the VRA of the envelope protein (Env). Compared with 4070A MuLV, virus with the G100R Env displayed enhanced binding on target cells, internalized the virus more rapidly, and increased the overall viral titer in multiple cell types. This provides a direct correlation between binding strength and efficiency of viral entry. Deletion of a His residue at the SU N terminus eliminated the transduction efficiency by the G100R virus, suggesting that the G100R virus maintains the regulatory characteristics of 4070A viral entry. The improved transduction efficiency of G100R Env would be an asset for gene delivery systems.  相似文献   

5.
Human influenza A viruses replicate in the upper respiratory tract at a temperature of about 33 degrees C, whereas avian viruses replicate in the intestinal tract at a temperature close to 41 degrees C. In the present study, we analyzed the influence of low temperature (33 degrees C) on RNA replication of avian and human viruses in cultured cells. The kinetics of replication of the NP segment were similar at 33 and 37 degrees C for the human A/Puerto-Rico/8/34 and A/Sydney/5/97 viruses, whereas replication was delayed at 33 degrees C compared to 37 degrees C for the avian A/FPV/Rostock/34 and A/Mallard/NY/6750/78 viruses. Making use of a genetic system for the in vivo reconstitution of functional ribonucleoproteins, we observed that the polymerase complexes derived from avian viruses but not human viruses exhibited cold sensitivity in mammalian cells, which was determined mostly by residue 627 of PB2. Our results suggest that a reduced ability of the polymerase complex of avian viruses to ensure replication of the viral genome at 33 degrees C could contribute to their inability to grow efficiently in humans.  相似文献   

6.
We have constructed and characterized a Rous sarcoma virus-based retroviral vector with the host range of the amphotropic murine leukemia virus (MLV). The chimeric retroviral genome was created by replacing the env coding region in the replication-competent retroviral vector RCASBP(A) with the env region from an amphotropic MLV. The recombinant vector RCASBP-M(4070A) forms particles containing MLV Env glycoproteins. The vector replicates efficiently in chicken embryo fibroblasts and is able to transfer genes into mammalian cells. Vector stocks with titers exceeding 10(6) CFU/ml on mammalian cells can be easily prepared by passaging transfected chicken embryo fibroblasts. Since the vector is inherently defective in mammalian cells, it appears to have the safety features required for gene therapy.  相似文献   

7.
We report here on the generation of a mouse monoclonal antibody directed against Rous sarcoma virus (RSV) subgroup A Env that will be useful in functional and structural analysis of RSV Env, as well as in approaches employing the RCAS/Tva system for gene targeting. BALB/c mice were primed and given boosters twice with EnvA-expressing NIH 3T3 cells. Resulting hybridomas were tested by enzyme-linked immunosorbent assay against RCANBP virions and SU-A-immunoglobulin G immunoadhesin. One highly reactive hybridoma clone, mc8C5, was subcloned and tested in immunofluorescence, immunoprecipitation (IP), and Western blotting assays. In all three assays, mc8C5-4 subgroup-specifically recognizes SR-A Env, through the SU domain, expressed from different vectors in both avian and mammalian cells. This multifunctionality is notable for a mouse monoclonal. We furthermore observed a preference for binding to terminally glycosylated Env over core-glycosylated Env precursor in IPs, suggesting that the epitope is at least partially conformational and dependent on glycosylation. Most importantly, we found mc8C5-4 inhibited Env function: in vitro, the monoclonal not only interferes with binding of the EnvA receptor, Tva, but it also blocks the Tva-induced conformational change required for activation of the fusion peptide, without inducing that change itself. Infection of Tva-expressing avian or mammalian cells by avian sarcoma and leukosis virus (ASLV) or EnvA-pseudotyped murine leukemia virus, respectively, is efficiently inhibited by mc8C5-4. The apparent interference of the monoclonal with the EnvA-Tva complex formation suggests that the epitope seen by mc8C5 overlaps with the receptor binding site. This is supported by the observation that mutations of basic residues in hr2 or of the downstream glycosylation site, which both impair Tva-binding to EnvA, have similar effects on the binding of mc8C5. Thus, anti-ASLV-SU-A mc8C5-4 proves to be a unique new immunoreagent that targets the receptor-binding site on a prototypical retroviral envelope.  相似文献   

8.
To analyze the compatibility of avian influenza A virus hemagglutinins (HAs) and human influenza A virus matrix (M) proteins M1 and M2, we doubly infected Madin-Darby canine kidney cells with amantadine (1-aminoadamantane hydrochloride)-resistant human viruses and amantadine-sensitive avian strains. By using antisera against the human virus HAs and amantadine, we selected reassortants containing the human virus M gene and the avian virus HA gene. In our system, high virus yields and large, well-defined plaques indicated that the avian HAs and the human M gene products could cooperate effectively; low virus yields and small, turbid plaques indicated that cooperation was poor. The M gene products are among the primary components that determine the species specificities of influenza A viruses. Therefore, our system also indicated whether the avian HA genes effectively reassorted into the genome and replaced the HA gene of the prevailing human influenza A viruses. Most of the avian HAs that we tested efficiently cooperated with the M gene products of the early human A/PR/8/34 (H1N1) virus; however, the avian HAs did not effectively cooperate with the most recently isolated human virus that we tested, A/Nanchang/933/95 (H3N2). Cooperation between the avian HAs and the M proteins of the human A/Singapore/57 (H2N2) virus was moderate. These results suggest that the currently prevailing human influenza A viruses might have lost their ability to undergo antigenic shift and therefore are unable to form new pandemic viruses that contain an avian HA, a finding that is of great interest for pandemic planning.  相似文献   

9.
We isolated a field strain of avian hemangioma retrovirus (AHV) which induces a cytopathic effect (CPE) on cultured avian and mammalian cells shortly after infection. The kinetics of cell killing were dependent on the multiplicity of infection. The CPE on avian and mammalian cells was independent of virus replication, because UV-irradiated virus led to cell death as well. Biochemical and genetic experiments indicated that AHV env gene products were responsible for the CPE. Partially purified AHV envelope glycoproteins (gp85), but not those of the Rous sarcoma virus Prague C strain, induced a CPE. Rous-associated virus type 1, in which the env region was replaced by the AHV gp85 region, induced a CPE on avian and mammalian cultured cells. Therefore, we suggest that CPE is induced by AHV via interaction between viral gp85 and the cell membrane. This mode of CPE is unique among avian sarcoma-leukemia viruses.  相似文献   

10.
Certain murine leukemia viruses (MLVs) can induce progressive noninflammatory spongiform neurodegeneration similar to that caused by prions. The primary MLV determinants responsible have been mapped to within the env gene; however, it has remained unclear how env mediates disease, whether non-Env viral components are required, and what central nervous system (CNS) cells constitute the critical CNS targets. To address these questions, we examined the effect of transplanting engraftable C17.2 neural stem cells engineered to pseudotype, disseminate, and trans-complement neurovirulent (CasBrE, CasE, and CasES) or non-neurovirulent (Friend and SFF-FE) env sequences (SU or SU/TM) within the CNS using either the "non-neurovirulent" amphotropic helper virus, 4070A, or pgag-polgpt (a nonpackaged vector encoding Gag-Pol). These studies revealed that acute MLV-induced spongiosis results from two separable activities of Env. First, Env causes neuropathology through unique viral targeting within the CNS, which was efficiently mediated by ecotropic Envs (CasBrE and Friend), but not 4070A amphotropic Env. Second, Env induces spongiosis through a toxin activity that is MLV-receptor independent and does not require the coexpression of other viral structural proteins. CasBrE and 4070A Envs possess the toxin activity, whereas Friend Env does not. Although the identity of the critical viral target cell(s) remains unresolved, our results appear to exclude microglia and oligodendrocyte lineage cells, while implicating viral entry into susceptible neurons. Thus, MLV-induced disease parallels prionopathies in that a single protein, Env, mediates both the CNS targeting and the toxicity of the infectious agent that manifests itself as progressive vacuolar neurodegeneration.  相似文献   

11.
Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37°C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal airways (32°C). These data support the hypothesis that avian influenza viruses, ordinarily adapted to the temperature of the avian enteric tract (40°C), rarely infect humans, in part due to differences in host airway regional temperatures. Previously, a critical residue at position 627 in the avian influenza virus polymerase subunit, PB2, was identified as conferring temperature-dependency in mammalian cells. Here, we use reverse genetics to show that avianization of residue 627 attenuates a human virus, but does not account for the different infection between 32°C and 37°C. To determine the mechanism of temperature restriction of avian influenza viruses in HAE at 32°C, we generated recombinant human influenza viruses in either the A/Victoria/3/75 (H3N2) or A/PR/8/34 (H1N1) genetic background that contained avian or avian-like glycoproteins. Two of these viruses, A/Victoria/3/75 with L226Q and S228G mutations in hemagglutinin (HA) and neuraminidase (NA) from A/Chick/Italy/1347/99 and A/PR/8/34 containing the H7 and N1 from A/Chick/Italy/1347/99, exhibited temperature restriction approaching that of wholly avian influenza viruses. These data suggest that influenza viruses bearing avian or avian-like surface glycoproteins have a reduced capacity to establish productive infection at the temperature of the human proximal airways. This temperature restriction may limit zoonotic transmission of avian influenza viruses and suggests that adaptation of avian influenza viruses to efficient infection at 32°C may represent a critical evolutionary step enabling human-to-human transmission.  相似文献   

12.
Fluorescent retroviral envelope (Env) proteins were developed for direct visualization of viral particles. By fusing the enhanced green fluorescent protein (eGFP) to the N terminus of the amphotropic 4070A envelope protein, extracellular presentation of eGFP was achieved. Viruses incorporated the modified Env protein and efficiently infected cells. We used the GFP-tagged viruses for staining retrovirus receptor-positive cells, thereby circumventing indirect labeling techniques. By generating cells which conditionally expressed the GFP-tagged Env protein, we could confirm an inverse correlation between retroviral Env expression and infectivity (superinfection). eGFP-tagged virus particles are suitable for monitoring the dynamics of virus-cell interactions.  相似文献   

13.
The single gene reassortant virus that derives its PB2 gene from the avian influenza A/Mallard/NY/78 virus and remaining genes from the human influenza A/Los Angeles/2/87 virus exhibits a host range restriction (hr) phenotype characterized by efficient replication in avian tissue and failure to produce plaques in mammalian Madin-Darby canine kidney cells. The hr phenotype is associated with restriction of viral replication in the respiratory tract of squirrel monkeys and humans. To identify the genetic basis of the hr phenotype, we isolated four phenotypic hr mutant viruses that acquired the ability to replicate efficiently in mammalian tissue. Segregational analysis indicated that the loss of the hr phenotype was due to a mutation in the PB2 gene itself. The nucleotide sequences of the PB2 gene of each of the four hr mutants revealed that a single amino acid substitution at position 627 (Glu-->Lys) was responsible for the restoration of the ability of the PB2 single gene reassortant to replicate in Madin-Darby canine kidney cells. Interestingly, the amino acid at position 627 in every avian influenza A virus PB2 protein analyzed to date is glutamic acid, and in every human influenza A virus PB2 protein, it is lysine. Thus, the amino acid at residue 627 of PB2 is an important determinant of host range of influenza A viruses.  相似文献   

14.
Since the outbreak in humans of an H5N1 avian influenza virus in Hong Kong in 1997, poultry entering the live-bird markets of Hong Kong have been closely monitored for infection with avian influenza. In March 1999, this monitoring system detected geese that were serologically positive for H5N1 avian influenza virus, but the birds were marketed before they could be sampled for virus. However, viral isolates were obtained by swabbing the cages that housed the geese. These samples, known collectively as A/Environment/Hong Kong/437/99 (A/Env/HK/437/99), contained four viral isolates, which were compared to the 1997 H5N1 Hong Kong isolates. Analysis of A/Env/HK/437/99 viruses revealed that the four isolates are nearly identical genetically and are most closely related to A/Goose/Guangdong/1/96. These isolates and the 1997 H5N1 Hong Kong viruses encode common hemagglutinin (H5) genes that have identical hemagglutinin cleavage sites. Thus, the pathogenicity of the A/Env/HK/437/99 viruses was compared in chickens and in mice to evaluate the potential for disease outbreaks in poultry and humans. The A/Env/HK/437/99 isolates were highly pathogenic in chickens but caused a longer mean death time and had altered cell tropism compared to A/Hong Kong/156/97 (A/HK/156/97). Like A/HK/156/97, the A/Env/HK/437/99 viruses replicated in mice and remained localized to the respiratory tract. However, the A/Env/HK/437/99 isolates caused only mild pathological lesions in these tissues and no clinical signs of disease or death. As a measure of the immune response to these viruses, transforming growth factor beta levels were determined in the serum of infected mice and showed elevated levels for the A/Env/HK/437/99 viruses compared to the A/HK/156/97 viruses. This study is the first to characterize the A/Env/HK/437/99 viruses in both avian and mammalian species, evaluating the H5 gene from the 1997 Hong Kong H5N1 isolates in a different genetic background. Our findings reveal that at least one of the avian influenza virus genes encoded by the 1997 H5N1 Hong Kong viruses continues to circulate in mainland China and that this gene is important for pathogenesis in chickens but is not the sole determinant of pathogenicity in mice. There is evidence that H9N2 viruses, which have internal genes in common with the 1997 H5N1 Hong Kong isolates, are still circulating in Hong Kong and China as well, providing a heterogeneous gene pool for viral reassortment. The implications of these findings for the potential for human disease are discussed.  相似文献   

15.
The influenza M2 ectodomain (M2e) is well conserved across human influenza A subtypes, but there are few residue changes among avian and swine origin influenza A viruses. We expressed a tandem repeat construct of heterologous M2e sequences (M2e5x) derived from human, swine, and avian origin influenza A viruses using the yeast expression system. Intramuscular immunization of mice with AS04-adjuvanted M2e5x protein vaccines was effective in inducing M2e-specific antibodies reactive to M2e peptide and native M2 proteins on the infected cells with human, swine, or avian influenza virus, mucosal and systemic memory cellular immune responses, and cross-protection against H3N2 virus. Importantly, M2e5x immune sera were found to confer protection against different subtypes of H1N1 and H5N1 influenza A viruses in naïve mice. Also, M2e5x-immune complexes of virus-infected cells stimulated macrophages to secrete cytokines via Fc receptors, indicating a possible mechanism of protection. The present study provides evidence that M2e5x proteins produced in yeast cells could be developed as a potential universal influenza vaccine.  相似文献   

16.
H9N2 avian influenza A viruses are endemic in poultry of many Eurasian countries and have caused repeated human infections in Asia since 1998. To evaluate the potential threat of H9N2 viruses to humans, we investigated the replication and transmission efficiency of H9N2 viruses in the ferret model. Five wild-type (WT) H9N2 viruses, isolated from different avian species from 1988 through 2003, were tested in vivo and found to replicate in ferrets. However these viruses achieved mild peak viral titers in nasal washes when compared to those observed with a human H3N2 virus. Two of these H9N2 viruses transmitted to direct contact ferrets, however no aerosol transmission was detected in the virus displaying the most efficient direct contact transmission. A leucine (Leu) residue at amino acid position 226 in the hemagglutinin (HA) receptor-binding site (RBS), responsible for human virus-like receptor specificity, was found to be important for the transmission of the H9N2 viruses in ferrets. In addition, an H9N2 avian-human reassortant virus, which contains the surface glycoprotein genes from an H9N2 virus and the six internal genes of a human H3N2 virus, showed enhanced replication and efficient transmission to direct contacts. Although no aerosol transmission was observed, the virus replicated in multiple respiratory tissues and induced clinical signs similar to those observed with the parental human H3N2 virus. Our results suggest that the establishment and prevalence of H9N2 viruses in poultry pose a significant threat for humans.  相似文献   

17.
Li Z  Jiang Y  Jiao P  Wang A  Zhao F  Tian G  Wang X  Yu K  Bu Z  Chen H 《Journal of virology》2006,80(22):11115-11123
In the present study, we explored the genetic basis underlying the virulence and host range of two H5N1 influenza viruses in chickens. A/goose/Guangdong/1/96 (GS/GD/1/96) is a highly pathogenic virus for chickens, whereas A/goose/Guangdong/2/96 (GS/GD/2/96) is unable to replicate in chickens. These two H5N1 viruses differ in sequence by only five amino acids mapping to the PA, NP, M1, and NS1 genes. We used reverse genetics to create four single-gene recombinants that contained one of the sequence-differing genes from nonpathogenic GS/GD/2/96 and the remaining seven gene segments from highly pathogenic GS/GD/1/96. We determined that the NS1 gene of GS/GD/2/96 inhibited the replication of GS/GD/1/96 in chickens, while the substitution of the PA, NP, or M gene did not change the highly pathogenic properties of GS/GD/1/96. Conversely, of the recombinant viruses generated in the GS/GD/2/96 background, only the virus containing the NS1 gene of GS/GD/1/96 was able to replicate and cause disease and death in chickens. The single-amino-acid difference in the sequence of these two NS1 genes resides at position 149. We demonstrate that a recombinant virus expressing the GS/GD/1/96 NS1 protein with Ala149 is able to antagonize the induction of interferon protein levels in chicken embryo fibroblasts (CEFs), but a recombinant virus carrying a Val149 substitution is not capable of the same effect. These results indicate that the NS1 gene is critical for the pathogenicity of avian influenza virus in chickens and that the amino acid residue Ala149 correlates with the ability of these viruses to antagonize interferon induction in CEFs.  相似文献   

18.
The human immunodeficiency virus type 1 (HIV-1) Vpu and Env proteins are expressed from a bicistronic mRNA. To address the biological significance of the coordinated expression of vpu and env, we compared the relative effects on particle release of HIV-1 isolates containing an intact vpu gene or carrying point mutations in its initiation codon or internal deletions, respectively. We found that the primary AD8 isolate, which is unable to express vpu due to a mutation in its translation initiation codon, was able to replicate in primary macrophages and peripheral blood mononuclear cells with efficiency similar to that of an isogenic variant expressing Vpu. Interestingly, AD8 lacking a vpu initiation codon produced higher levels of Env protein than its Vpu-expressing isogenic variant. In contrast, disabling Vpu without removing the vpu initiation codon did not alter Env expression but significantly reduced virus production. AD8 Env when provided in trans was capable of enhancing release not only of AD8 particles but also of viruses of the T-cell-tropic NL4-3 isolate. We conclude that AD8 Env encodes a Vpu-like activity similar to that previously reported for HIV-2 Env proteins and is thus able to augment virus secretion. When expressed at elevated levels, i.e., following mutation of the vpu initiation codon, AD8 Env was able to compensate for the lack of Vpu and thereby ensure efficient virus release. Thus, the ability to regulate virus release is redundant in AD8 and can be controlled by either Vpu or Env. Since Vpu controls several independent functions, including CD4 degradation, our results suggest that some HIV-1 isolates may have evolved a mechanism to regulate Vpu activity without compromising their ability to efficiently replicate in the host cells.  相似文献   

19.
Jin J  Li F  Mothes W 《Journal of virology》2011,85(15):7672-7682
Retrovirus transmission via direct cell-cell contact is more efficient than diffusion through the extracellular milieu. This is believed to be due to the ability of viruses to efficiently coordinate several steps of the retroviral life cycle at cell-cell contact sites (D. C. Johnson et al., J. Virol. 76:1-8, 2002; D. M. Phillips, AIDS 8:719-731, 1994; Q. Sattenau, Nat. Rev. Microbiol. 6:815-826, 2008). Using the murine leukemia virus (MLV) as a model retrovirus, we have previously shown that interaction between viral envelope (Env) and receptor directs viral assembly to cell-cell contact sites to promote efficient viral spreading (J. Jin et al., PLoS Biol. 7:e1000163, 2009). In addressing the underlying mechanism, we observed that Env cytoplasmic tail directs this contact-induced polarized assembly. We present here the viral determinants in the Env cytoplasmic tail and Gag that are important in this process. A tyrosine residue within the cytoplasmic tail of Env was identified, which directs polarized assembly. MLV matrix-mediated membrane targeting is required for Gag recruitment to sites of cell-cell contact. Our results suggest that MLV polarized assembly is mediated by a direct or indirect interaction between both domains, thereby coupling Gag recruitment and virus assembly to Env accumulation at the cell-cell interface. In contrast, HIV Gag that assembles outside of cell-cell interfaces can subsequently be drawn into contact zones mediated by MLV Env and receptor, a finding that is consistent with the previously observed lateral movement of HIV into the virological synapse (W. Hubner et al., Science 323:1743-1747, 2009; D. Rudnicka et al., J. Virol. 83:6234-6246, 2009). As such, we observed two distinct modes of virus cell-to-cell transmission that involve either polarized or nonpolarized assembly, but both result in virus transmission.  相似文献   

20.
Enzootic nasal tumor virus (ENTV) and jaagsiekte sheep retrovirus (JSRV) are closely related retroviruses that cause epithelial cancers of the respiratory tract in sheep and goats. Both viruses use the glycosylphosphatidylinositol (GPI)-anchored cell surface protein hyaluronidase 2 (Hyal2) as a receptor for cell entry, and entry is mediated by the envelope (Env) proteins encoded by these viruses. Retroviral vectors bearing JSRV Env can transduce cells from a wide range of species, with the exception of rodent cells. Because of the low titer of vectors bearing ENTV Env, it has been difficult to determine the tropism of ENTV vectors, which appeared to transduce cells from sheep and humans only. Here we have developed high-titer ENTV packaging cells and confirm that ENTV has a restricted host range compared to that of JSRV. Most cells that are not transduced by JSRV or ENTV vectors can be made susceptible following expression of human Hyal2 on the cells. However, five rat cell lines from different rat strains and different tissues that were engineered to express human Hyal2 were still only poorly infected by ENTV vectors, even though the ENTV Env protein could bind well to human Hyal2 expressed on four of these cell lines. These results indicate the possibility of a coreceptor requirement for these viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号