首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been proposed that self and protozoan-derived GPI anchors are natural ligands of CD1d. In this study, we investigated the ability of GPI anchors from Trypanosoma cruzi to bind to CD1d and mediate activation of NKT cells. We observed that GPI-anchored mucin-like glycoproteins (GPI mucins), glycoinositolphospholipids (GIPLs), and their phosphatidylinositol moieties bind to rCD1d and inhibit the stimulation of a NKT hybridoma by the alpha-galactosylceramide-CD1 complex. However, these GPI anchors and related structures were unable to activate NKT cells in vitro or in vivo. We found that high titers of Ab anti-GPI mucins, but not anti-GIPLs, were detected in sera from wild-type as well as in TAP1(-/-), CD1d(-/-), and MHC class II(-/-) mice after immunization. However, T-dependent anti-GPI mucin Ab isotypes, such as IgG1, IgG2a, IgG2b, and IgG3, were absent on MHC class II(-/-), but were conserved in CD1d(-/-) and TAP1(-/-) mice. Furthermore, we found that CD1d(-/-) mice presented a robust cytokine as well as anti-GPI mucins and anti-GIPL Ab responses, upon infection with T. cruzi parasites. These results indicate that, despite binding to CD1d, GPI mucins and related structures expressed by T. cruzi appear not to evoke dominant CD1d-restricted immune responses in vivo. In contrast, MHC class II is critical for the production of the major Ig G isotypes against GPI mucins from T. cruzi parasites.  相似文献   

2.
The surface of the protozoan parasite Trypanosoma cruzi is covered in mucins, which contribute to parasite protection and to the establishment of a persistent infection. Their importance is highlighted by the fact that the approximately 850 mucin-encoding genes comprise approximately 1% of the parasite genome and approximately 6% of all predicted T. cruzi genes. The coordinate expression of a large repertoire of mucins containing variable regions in the mammal-dwelling stages of the T. cruzi life cycle suggests a possible strategy to thwart the host immune response. Here, we discuss the expression profiling of T. cruzi mucins, the mechanisms leading to the acquisition of mucin diversity and the possible consequences of a mosaic surface coat in the interplay between parasite and host.  相似文献   

3.
The surface of the protozoan Trypanosoma cruzi is covered by a dense coat of mucin-type glycoconjugates, which make a pivotal contribution to parasite protection and host immune evasion. Their importance is further underscored by the presence of >1000 mucin-like genes in the parasite genome. In the present study we demonstrate that one such group of genes, termed TcSMUG L, codes for previously unrecognized mucin-type glycoconjugates anchored to and secreted from the surface of insect-dwelling epimastigotes. These features are supported by the in vivo tracing and characterization of endogenous TcSMUG L products and recombinant tagged molecules expressed by transfected parasites. Besides displaying substantial homology to TcSMUG S products, which provide the scaffold for the major Gp35/50 mucins also present in insect-dwelling stages of the T. cruzi lifecycle, TcSMUG L products display unique structural and functional features, including being completely refractory to sialylation by parasite trans-sialidases. Although quantitative real time-PCR and gene sequencing analyses indicate a high degree of genomic conservation across the T. cruzi species, TcSMUG L product expression and processing is quite variable among different parasite isolates.  相似文献   

4.
The protozoan parasite Trypanosoma cruzi, the agent of Chagas disease, has a large number of mucin molecules on its surface, whose expression is regulated during the life cycle. These mucins are the main acceptors of sialic acid, a monosaccharide that is required by the parasite to infect and survive in the mammalian host. A large mucin-like gene family named TcMUC containing about 500 members has been identified previously in T. cruzi. TcMUC can be divided into two subfamilies according to the presence or absence of tandem repeats in the central region of the genes. In this work, T. cruzi parasites were transfected with one tagged member of each subfamily. Only the product from the gene with repeats was highly O-glycosylated in vivo. The O-linked oligosaccharides consisted mainly of beta-d-Galp(1-->4)GlcNAc and beta-d-Galp(1-->4)[beta-d-Galp(1-->6)]-d-GlcNAc. The same glycosyl moieties were found in endogenous mucins. The mature product was anchored by glycosylphosphatidylinositol to the plasma membrane and exposed to the medium. Sera from infected mice recognized the recombinant product of one repeats-containing gene thus showing that they are expressed during the infection. TcMUC genes encode a hypervariable region at the N terminus. We now show that the hypervariable region is indeed present in the exposed mature N termini of the mucins because sera from infected hosts recognized peptides having sequences from this region. The results are discussed in comparison with the mucins from the insect stages of the parasite (Di Noia, J. M., D'Orso, I., Sánchez, D. O., and Frasch, A. C. C. (2000) J. Biol. Chem. 275, 10218-10227) which do not have variable regions.  相似文献   

5.
The sialic acid present in the protective surface mucin coat of Trypanosoma cruzi is added by a membrane anchored trans-sialidase (TcTS), a modified sialidase that is expressed from a large gene family. In this work, we analyzed single domain camelid antibodies produced against trans-sialidase. Llamas were immunized with a recombinant trans-sialidase and inhibitory single-domain antibody fragments were obtained by phage display selection, taking advantage of a screening strategy using an inhibition test instead of the classic binding assay. Four single domain antibodies displaying strong trans-sialidase inhibition activity against the recombinant enzyme were identified. They share the same complementarity-determining region 3 length (17 residues) and have very similar sequences. This result indicates that they likely derived from a unique clone. Probably there is only one structural solution for tight binding inhibitory antibodies against the TcTS used for immunization. To our surprise, this single domain antibody that inhibits the recombinant TcTS, failed to inhibit the enzymatic activity present in parasite extracts. Analysis of individual recombinant trans-sialidases showed that enzymes expressed from different genes were inhibited to different extents (from 8 to 98%) by the llama antibodies. Amino acid changes at key positions are likely to be responsible for the differences in inhibition found among the recombinant enzymes. These results suggest that the presence of a large and diverse trans-sialidase family might be required to prevent the inhibitory response against this essential enzyme and might thus constitute a novel strategy of T. cruzi to evade the host immune system.  相似文献   

6.
A thick coat of mucin-like glycoproteins covers the surface of Trypanosoma cruzi and plays a crucial role in parasite protection and infectivity and host immunomodulation. The appealing candidate genes coding for the mucins of the mammal-dwelling stages define a heterogeneous family termed TcMUC, which comprises up to 700 members, thus precluding a genetic approach to address the protein core identity. Here, we demonstrate by multiple approaches that the TcMUC II genes code for the majority of trypomastigote mucins. These molecules display a variable, non-repetitive, highly O-glycosylated central domain, followed by a short conserved C terminus and a glycosylphosphatidylinositol anchor. A simultaneous expression of multiple TcMUC II gene products was observed. Moreover, the C terminus of TcMUC II mucins, but not their central domain, elicited strong antibody responses in patients with Chagas' disease and T. crusi infected animals. This highly diverse coat of mucins may represent a refined parasite strategy to elude the mammalian host immune system.  相似文献   

7.
Chagas' disease, caused by Trypanosoma cruzi, affects about 18 million people in Latin America, and no effective treatment is available to date. To acquire sialic acid from the host glycoconjugates, T. cruzi expresses an unusual surface sialidase with trans-sialidase activity (TcTS) that transfers the sugar to parasite mucins. Surface sialic acid was shown to have relevant functions in protection of the parasite against the lysis by complement and in mammalian host cell invasion. The recently determined 3D structure of TcTS allowed a detailed analysis of its catalytic site and showed the presence of a lactose-binding site where the beta-linked galactose accepting the sialic acid is placed. In this article, the acceptor substrate specificity of lactose derivatives was studied by high pH anion-exchange chromatography with pulse amperometric detection. The lactose open chain derivatives lactitol and lactobionic acid, as well as other derivatives, were found to be good acceptors of sialic acid. Lactitol, which was the best of the ones tested, effectively inhibited the transfer of sialic acid to N-acetyllactosamine. Furthermore, lactitol inhibited parasite mucins re-sialylation when incubated with live trypanosomes and TcTS. Lactitol also diminished the T. cruzi infection in cultured Vero cells by 20-27%. These results indicate that compounds directed to the lactose binding site might be good inhibitors of TcTS.  相似文献   

8.
9.
During the acute phase of infection, T. cruzi replicates extensively and releases immunomodulatory molecules that delay parasite-specific responses mediated by effector T cells. This mechanism of evasion allows the parasite to spread in the host. Parasite molecules that regulate the host immune response during Chagas'disease have not been fully identified. GPI-anchored mucins, glycoinositolphospholipids, and glycoproteins comprise some of the most abundant T. cruzi surface molecules. IL-10 IFN-γ-secreting CD4+ T cells are activated during chronic infections and are responsible for prolonged persistence of parasite and for host protection against severe inflammatory responses. In this work we evaluated the role of rMBP::SSP4 protein of T. cruzi, a recombinant protein derived from a GPI anchored antigen, SSP4, as an immunomodulator molecule, finding that it was able to induce high concentrations of IL-10 and IFN-γ both in vivo and in vitro; during this last condition, both cytokines were produced by IL-10-IFN-γ-secreting CD4+ T cells.  相似文献   

10.
A mouse monoclonal antibody, WIC 29.26 Ab, has previously been characterized as recognizing a carbohydrate epitope on a 72,000 m.w. glycoprotein (GP72) expressed on the surface of Trypanosoma cruzi epimastigotes and metacyclic trypomastigotes. This molecule has been implicated as a receptor in the control of parasite transformation, and when used as an immunogen in mice, partially protects against T. cruzi infection. In previous experiments in which a radioimmunoassay was used, WIC 29.26 Ab was found to react with approximately 50% of T. cruzi strains and clones derived from a variety of sources. In this study, we attempted to determine whether the WIC 29.26 Ab-nonreactive isolates lack the entire GP72 or merely lack the epitope recognized by this monoclonal antibody. WIC 226.4 Ab, a monoclonal antibody raised against periodate-treated GP72, reacted in an immunofluorescence assay with all strains and clones studied, including those which had not reacted with WIC 29.26 Ab. Likewise, two polyvalent rabbit sera, directed specifically against GP72, bound to all T. cruzi isolates tested. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of detergent lysates of surface-labeled epimastigotes immunoprecipitated with WIC 29.26 Ab showed that the epitope bound by this antibody was present in all but one of the parasites that were surface-nonreactive, as well as in all those that were surface-reactive. WIC 29.26 Ab precipitated a single 72K Mr band from most strains and clones, but in several cases 79K Mr and 66K Mr bands were seen. Isolates from both the surface-reactive and the surface-nonreactive groups showed the latter pattern. These results demonstrate that GP72, or similar electrophoretic variants--and with one exception, the carbohydrate epitope bound by WIC 29.26 Ab--are present in the surface membrane of all strains and clones tested. This observation suggests that in intact epimastigotes of the surface-nonreactive isolates, the epitope is not accessible because of structural changes in the molecule itself or because of differences in the membrane environment of GP72.  相似文献   

11.
The mucin-like glycoproteins of Trypanosoma cruzi have novel O-linked oligosaccharides that are acceptors of sialic acid in the trans-sialidase (TcTS) reaction. The transference of sialic acid from host glycoconjugates to the mucins is involved in infection and pathogenesis. The synthesis of the pentasaccharide, beta-D-Galp-(1-->2)-[beta-D-Galp-(1-->3)]-beta-D-Galp-(1-->6)-[beta-D-Galf-(1-->4)]-D-GlcpNAc and the corresponding alditol, previously isolated by reductive beta-elimination of the mucins, is described. The key step was the 6-O-glycosylation of a easily accessible derivative of beta-D-Galf-(1-->4)-D-GlcpNAc with a beta-D-Galp-(1-->2)-[beta-D-Galp-(1-->3)]-D-Galp donor using the trichloroacetimidate method. The beta-linkage was diastereoselectively obtained by the nitrile effect. The pentasaccharide is the major oligosaccharide in the mucins of T. cruzi, G strain and presents two terminal beta-D-Galp residues for possible sialylation by TcTS. A preparative sialylation reaction was performed with its benzyl glycoside and the sialylated product was isolated and characterized. NMR spectroscopic analysis showed that selective monosialylation occurred at the terminal (1-->3) linked galactopyranose.  相似文献   

12.
Glycoproteins on the cell surface of Trypanosoma cruzi are known to play important roles in the interaction of the parasite with the host cells. We previously determined the structures of the O-glycan chains from the sialoglycoproteins (mucin-like molecules) of the G- and Y-strains and observed significant differences between them. We now report the structures of the sialylated and nonsialylated O-linked oligosaccharides isolated from the cell surface glycoproteins of the myotropic CL-Brener strain grown in the presence of fetal calf serum. The structures of the O-linked oligosaccharide alditols obtained by reductive beta-elimination of the sialoglycoprotein were determined by a combination of methylation analysis, fast atom bombardment-mass spectrometry and nuclear magnetic resonance spectroscopy. The presence of a beta-galactopyranose substituent on the N-acetylglucosamine O-4 position shows that these O-linked oligosaccharides from CL-Brener strain belong to the same family as those isolated from mucins expressed by T. cruzi Y strain, a reticulotropic strain. In addition, novel O-glycans, including alpha2-3 mono-sialylated species are described.  相似文献   

13.
Recently, we cloned and characterized a full-length cDNA of the hamster Muc1 gene, the expression of which appears to be associated with secretory cell differentiation (Park HR, Hyun SW, and Kim KC. Am J Respir Cell Mol Biol 15: 237-244, 1996). The role of Muc1 mucins in the airway, however, is unknown. In this study, we investigated whether cell surface mucins are adhesion sites for Pseudomonas aeruginosa. Chinese hamster ovary (CHO) cells not normally expressing Muc1 mucin were stably transfected with the hamster Muc1 cDNA, and binding to P. aeruginosa was examined. Our results showed that 1) stably transfected CHO cells expressed both Muc1 mRNA and Muc1 mucins based on Northern and Western blot analyses, 2) Muc1 mucins present on the cell surface were degraded by neutrophil elastase, and 3) expression of Muc1 mucins on the cell surface resulted in a significant increase in adhesion of P. aeruginosa that was completely abolished by either proteolytic cleavage with neutrophil elastase or deletion of the extracellular domain by mutation. We conclude that Muc1 mucins expressed on the surface of CHO cells serve as adhesion sites for P. aeruginosa, suggesting a possible role for these glycoproteins in the early stage of airway infection and providing a model system for studying epithelial cell responses to bacterial adhesion that leads to airway inflammation in general and cystic fibrosis in particular.  相似文献   

14.
Intracellular protozoan parasites are potent stimulators of cell-mediated immunity. The induction of macrophage proinflammatory cytokines by Trypanosoma cruzi is considered to be important in controlling the infection and the outcome of Chagas' disease. Here we show that the potent tumour necrosis factor-alpha-, interleukin-12- and nitric oxide-inducing activities of T.cruzi trypomastigote mucins were recovered quantitatively in a highly purified and characterized glycosylphosphatidylinositol (GPI) anchor fraction of this material. The bioactive trypomastigote GPI fraction was compared with a relatively inactive GPI fraction prepared from T. cruzi epimastigote mucins. The trypomastigote GPI structures were found to contain additional galactose residues and unsaturated, instead of saturated, fatty acids in the sn-2 position of the alkylacylglycerolipid component. The latter feature is essential for the extreme potency of the trypomastigote GPI fraction, which is at least as active as bacterial endotoxin and Mycoplasma lipopeptide and, therefore, one of the most potent microbial proinflammatory agents known.  相似文献   

15.
Trypanosoma cruzi is wrapped by a dense coat of mucin-type molecules encoded by complex gene families termed TcSMUG and TcMUC, which are expressed in the insect- and mammal-dwelling forms of the parasite, respectively. Here, we dissect the contribution of distinct post-translational modifications on the trafficking of these glycoconjugates. In vivo tracing and characterization of tagged-variants expressed by transfected epimastigotes indicate that although the N-terminal signal peptide is responsible for targeting TcSMUG products to the endoplasmic reticulum (ER), the glycosyl phosphatidylinositol (GPI)-anchor likely functions as a forward transport signal for their timely progression along the secretory pathway. GPI-minus variants accumulate in the ER, with only a minor fraction being ultimately released to the medium as anchorless products. Secreted products, but not ER-accumulated ones, display several diagnostic features of mature mucin-type molecules including extensive O-type glycosylation, Galf-based epitopes recognized by monoclonal antibodies, and terminal Galp residues that become readily sialylated upon addition of parasite trans-sialidases. Processing of N-glycosylation site(s) is dispensable for the overall TcSMUG mucin-type maturation and secretion. Despite undergoing different O-glycosylation elaboration, TcMUC reporters yielded quite similar results, thus indicating that (i) molecular trafficking signals are structurally and functionally conserved between mucin families, and (ii) TcMUC and TcSMUG products are recognized and processed by a distinct repertoire of stage-specific glycosyltransferases. Thus, using the fidelity of a homologous expression system, we have defined some biosynthetic aspects of T. cruzi mucins, key molecules involved in parasite protection and virulence.  相似文献   

16.
The localization of neutral mucin and acidic mucins in both control and fasted rat gastric fundic mucosa were examined by microscopic and electron microscopic histochemical methods. By Carnoy's fixation, the surface mucous coat of the control rat gastric fundic mucosa was found to be composed of alternating layers of acidic mucins and neutral mucin, indicating the synchronous and cyclic secretions of them. In many gastric pits of the fundic glands, the acidic mucins were found to spring out from the deep foveolar regions like volcanoes. This phenomenon may suggest that the acidic mucins play a fundamental role in protecting the pit cells against HCl during its passage, and the layers of neutral mucin and acidic mucins in the surface coat is the safeguard against the HCl and digestive enzymes in the gastric lumen. In the fasting rat gastric fundic mucosa, the acidity and the amount of the gastric juice were markedly decreased, indicating the suppressed secretions of mucins and HCl. The decreased production of sulfomucin was directly demonstrated by 35SO4-autoradiography. Many mucous neck cells existing in close association with the parietal cells were ballooned due to accumulation of alcian blue (AB)-positive but high iron-diamine (HID)-negative sialomucin, which was not demonstrable in the control. The secretory granules of sialomucin contained in the ballooned mucous neck cells were positively stained ultrastructurally with cacodylate-ferric colloid to stain acid mucopolysaccharides.  相似文献   

17.
Polyclonal antibodies obtained against antigenic proteins encoded by six recombinant DNA clones of Trypanosoma cruzi were used for the ultrastructural localization of the respective antigens in thin sections of parasites (epimastigote, amastigote and trypomastigote forms of T. cruzi) embedded at low temperature in Lowicryl K4M resin. Antigens of high molecular weight containing tandemly repeated amino acid sequence motifs and recognized by sera from patients with Chagas' disease, were located only in the flagellum, where it contacts the parasite cell body. Other antigens were located on the surface of the parasite while still others were found within the flagellar pocket, as is the case with an antigen released during the acute phase of Chagas' disease. Thus, we conclude that some of the T. cruzi proteins which are antigenic in human infections are located in defined regions of the parasite. Some of the antigens were not expressed to the same extent in the three different developmental stages of the parasite.  相似文献   

18.
Insect-transmitted protozoan parasites of the order Kinetoplastida, suborder Trypanosomatina, include Trypanosoma brucei (aetiological agent of African sleeping sickness), Trypanosoma cruzi (aetiological agent of Chagas'' disease in South and Central America) and Leishmania spp. (aetiological agents of a variety of diseases throughout the tropics and sub-tropics). The structures of the most abundant cell-surface molecules of these organisms is reviewed and correlated with the different modes of parasitism of the three groups of parasites. The major surface molecules are all glycosylphosphatidylinositol (GPI)-anchored glycoproteins, such as the variant surface glycoproteins of T. brucei and the surface mucins of T. cruzi, or complex glycophospholipids, such as the lipophosphoglycans and glycoinositolphospholipids of the leishmanias. Significantly, all of the aforementioned structures share a motif of Man alpha 1-4GlcN alpha 1-6-myo-inositol-1-HPO4-lipid and can therefore be considered to be members of a GPI superfamily.  相似文献   

19.
Approximately 50% of the predicted protein-coding genes of the Trypanosoma cruzi CL Brener strain are annotated as hypothetical or conserved hypothetical proteins. To further characterize these genes, we generated 1161 open-reading frame expressed sequence tags (ORESTES) from the mammalian stages of the VL10 human strain. Sequence clustering resulted in 435 clusters, consisting of 339 singletons and 96 contigs. Significant matches to the T. cruzi predicted gene database were found for ~94% contigs and ~69% singletons. These included genes encoding surface proteins, known to be intensely expressed in the parasite mammalian stages and implicated in host cell invasion and/or immune evasion mechanisms. Among 151 contigs and singletons with similarity to predicted hypothetical protein-coding genes and conserved hypothetical protein-coding genes, 83% showed no match with T. cruzi EST and/or proteome databases. These ORESTES are the first experimental evidence that the corresponding genes are in fact transcribed. Sequences with no significant match were searched against several T. cruzi and National Center for Biotechnology Information non-redundant sequence databases. The ORESTES analysis indicated that 124 predicted conserved hypothetical protein-coding genes and 27 predicted hypothetical protein-coding genes annotated in the CL Brener genome are transcribed in the VL10 mammalian stages. Six ORESTES annotated as hypothetical protein-coding genes showing no match to EST and/or proteome databases were confirmed by Northern blot in VL10. The generation of this set of ORESTES complements the T. cruzi genome annotation and suggests new stage-regulated genes encoding hypothetical proteins.  相似文献   

20.
Genes with homology to the bacterial mutS gene, which encodes a protein involved in post-replication DNA mismatch repair, are known in several organisms. Using a degenerate PCR strategy, we cloned a Trypanosoma cruzi genomic DNA fragment homologous to the mutS gene class two (MSH2). This fragment was used as a probe to select the corresponding cDNAs from a T. cruzi cDNA library. The complete sequence of the gene (3304 bp), denominated TcMSH2, was obtained. The sequence contained an open reading frame of 2889 bp coding for a putative protein of 962 amino acids. Computational analyses of the amino acid sequence showed 36% identity with MSH2 proteins from other eukaryotes and revealed the presence of all functional domains of MutS proteins. Hybridization analyses indicated that the TcMSH2 gene is present as a single copy gene that is expressed in all forms of the T. cruzi life cycle. The role of the product of the TcMSH2 gene in mismatch repair was investigated by negative dominance phenotype analyses in Escherichia coli. When eukaryotic muts genes are expressed in a prokaryotic system, they increase the bacterial mutation rate. The same phenomenon was observed with the TcMSH2 cDNA, indicating that T. cruzi MSH2 interferes with the bacterial mismatch system. Phylogenetic analyses showed that the T. cruzi gene grouped with the MSH2 clade confirming the nature of the gene isolated in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号