首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of gamma-aminobutyric acid (GABA) on gastric somatostatin and gastrin release was studied using an isolated perfused rat stomach preparation. GABA dose-dependently inhibited somatostatin release (maximal inhibition of 44% at 10(-5)M GABA), whereas gastrin secretion was not affected. The GABA agonist muscimol led to a decrease in somatostatin release of similar magnitude. The GABA-induced changes were partially reversed by 10(-5)M atropine. Gastrin secretion was not influenced by either protocol. It is concluded that GABA as a putative neurotransmitter in the enteric nervous system is inhibitory to rat gastric somatostatin release in vitro via cholinergic pathways.  相似文献   

2.
Recently we have shown the release of bombesin-like immunoreactivity (BLI) from the isolated perfused rat stomach. In these experiments we have shown that BLI secretion is stimulated by acetylcholine. Gastric inhibitory peptide (GIP) exerts an inhibitory effect which is dependent on the intraluminal pH. The present study was designed to examine further the exact cholinergic mechanisms and to study the interaction between cholinergic and histaminergic mechanisms as well as the effect of the intraluminal pH. Acetylcholine elicited a dose-dependent increase in BLI and gastrin secretion (10(-6) M and 2 X 10(-6)M), whereas somatostatin release was suppressed at luminal pH 7. Blockade of muscarinic cholinergic receptors by atropine (10(-5)M) and nicotinic cholinergic receptors by hexamethonium (10(-5) M) abolished the effect of acetylcholine on all three peptides. Reduction of the intraluminal pH to 2 also abolished acetylcholine-induced stimulation of BLI and gastrin secretion and the inhibition of somatostatin secretion. Changes of intraluminal pH per se had no effect on the secretion of either peptide. Somatostatin (10(-7) M) reduced both BLI and gastrin secretion during stimulation with acetylcholine. The addition of the H2-receptor antagonist cimetidine (10(-5) M) abolished the effect of both doses of acetylcholine on BLI and somatostatin secretion and also the effect of the lower dose of acetylcholine (10(-6) M) on gastrin secretion during luminal pH 7. At luminal pH 2 cimetidine did not alter BLI and somatostatin secretion in response to acetylcholine, however, gastrin release was augmented in the presence of cimetidine. These data demonstrate that the effect of acetylcholine on BLI, gastrin, and somatostatin secretion is mediated by muscarinic and nicotinic cholinergic receptors and also by histamine H2-receptors. Somatostatin inhibits cholinergically induced BLI secretion. The cholinergic effects on BLI, somatostatin and gastrin secretion are abolished during an acidic intragastric pH. In this isolated perfused rat stomach model the inhibitory effect of intraluminal acid on gastrin secretion is, at least in part, mediated by H2-receptors. This suggests that the secretion of bombesin, a potential peptidergic neurotransmitter is modulated by neural, endocrine and local tissue factors and also by alterations of intragastric pH.  相似文献   

3.
Gastrin regulates ECL cell histamine release and is a critical determinant of acid secretion. ECL cell secretion and proliferation is inhibited by gastrin antagonists and somatostatin but little is known about the role of dopamine agonists in this process. Since the ECL cell exhibits all three classes of receptor we evaluated and compared the effects of the gastrin receptor antagonist, (YF476), lanreotide (SST agonist) and novel dopaminergic agents (BIM53061 and BIM27A760) on ECL cell histamine secretion and proliferation. Highly enriched (>98%) ECL cell preparations prepared from rat gastric mucosa using a FACS approach were studied. Real-time PCR confirmed presence of the CCK2, SS2 and SS5 and D1 receptors on ECL cells. YF476 inhibited histamine secretion and proliferation with IC(50)s of 1.25 nM and 1.3 x 10(-11) M respectively, values 10-1000x more potent than L365,260. Lanreotide inhibited secretion and proliferation (2.2 nM, 1.9 x 10(-10) M) and increased YF476-inhibited proliferation a further 5-fold. The dopamine agonist, BIM53061, inhibited gastrin-mediated ECL cell secretion and proliferation (17 nM, 6 x 10(-10) M) as did the novel dopamine/somatostatin chimera BIM23A760 (22 nM, 4.9 x 10(-10) M). Our studies demonstrate that the gastrin receptor antagonist, YF476, is the most potent inhibitor of ECL cell histamine secretion and proliferation. Lanreotide, a dopamine agonist and a dopamine/somatostatin chimera inhibited ECL cell function but were 10-1000x less potent than YF476. Agents that selectively target the CCK2 receptor may provide alternative therapeutic strategies for gastrin-mediated gastrointestinal cell secretion and proliferation such as evident in the hypergastrinemic gastric carcinoids associated with low acid states.  相似文献   

4.
Ghrelin release in man depends on the macronutrient composition of the test meal. The mechanisms contributing to the differential regulation are largely unknown. To elucidate their potential role, glucagon-like peptide-1 (GLP-1), gastric inhibitory polypeptide (GIP), insulin, gastrin and somatostatin were examined on isolated rat stomach ghrelin secretion, which offers the advantage of avoiding systemic interactions. Basal ghrelin secretion was in a range that did not permit to consistently evaluate inhibiting effects. Therefore, the effect of gastrointestinal hormones and insulin was analyzed during vagal prestimulation. GLP-1(7-36)amide 10(-8) and 10(-7) M decreased ghrelin secretion significantly. In contrast, GIP 10(-8) and 10(-7) M augmented not only prestimulated, but also basal ghrelin secretion (p<0.05). Insulin reduced ghrelin at 10(-10), 10(-8) and 10(-6) M (p<0.05). Both gastrin 10(-8) M and somatostatin 10(-6) M also significantly inhibited ghrelin secretion. These data demonstrate that GLP-1(7-36)amide, insulin, gastrin and somatostatin are potential candidates to contribute to the postprandially observed inhibition of ghrelin secretion with insulin being the most effective inhibitor in this isolated stomach model. GIP, on the other hand, could attenuate the postprandial decrease. Because protein-rich meals do not effectively stimulate GIP release, other as yet unknown intestinal factors must be responsible for protein-induced stimulation of ghrelin release.  相似文献   

5.
In the present study the release of bombesin-like immunoreactivity (BLI), somatostatin and gastrin was determined form the isolated perfused rat stomach. Gastric inhibitory polypeptide (GIP, 2 X 10(-9) M) had no effect on BLI while stimulating somatostatin and gastrin release. In these experiments the luminal pH of the stomach was kept at pH 7. Reduction of the luminal pH to 2 resulted in an inhibition of BLI secretion by GIP while gastrin release was abolished and somatostatin remained unaffected compared to luminal pH 7. Acetylcholine (10(-6) and 2 X 10(-6) M) elicited a dose-dependent stimulation of BLI secretion while gastrin was stimulated and somatostatin secretion suppressed independent of the administered dose. The present data demonstrate that release of bombesin-like immunoreactivity can be modulated by intestinal hormones and neurotransmitters and is integrated into the complex system of gastrointestinal neuroendocrine regulation.  相似文献   

6.
The effect of parasympathetic and sympathetic nerve stimulation on the secretion of gastric somatostatin and gastrin has been studied in an isolated perfused rat stomach preparation. Stimulation of the vagus nerve inhibited somatostatin secretion and increased gastrin release. Splanchnic nerve stimulation increased somatostatin release during simultaneous atropine perfusion, but not in its absence, whereas gastrin secretion was unchanged. The secretory activity of the gastric D-cell was therefore reciprocally influenced by the sympathetic and parasympathetic nerves but sympathetic stimulation was only effective during muscarinic blockade.  相似文献   

7.
The heptadecapeptide nociceptin/orphanin FQ (N/OFQ) has recently been isolated from porcine and rat brain and identified as the endogenous ligand of the N/OFQ receptor (NOP). It shows structural similarity with opioid peptides. N/OFQ has also been demonstrated in the gastrointestinal tract, where it inhibits gastrointestinal motility. The effect of N/OFQ on gastric neuroendocrine function is unknown as yet.In the isolated perfused rat stomach, N/OFQ 10(-6) M shows a small, but not significant decrease of basal somatostatin (SRIF) secretion. At the doses of 10(-12) M, 10(-10) and 10(-8) M N/OFQ has neither an effect on basal SRIF nor on basal vasoactive intestinal polypeptide (VIP), gastrin, substance P or bombesin secretion, respectively. However, gastric inhibitory polypeptide (GIP) 10(-9) M prestimulated SRIF secretion is significantly inhibited by N/OFQ 10(-8) M (-45+/-11%; p<0.05 vs. GIP). During concomitant infusion of the specific competitive NOP receptor antagonist [Nphe(1)]nociceptin(1-13)NH(2) 10(-6) M, the effect of N/OFQ is abolished (6+/-11%; p<0.05 vs. GIP and N/OFQ) while the opiate receptor antagonist naloxone 10(-6) M has no significant effect (-32+/-9%; ns vs. GIP and N/OFQ). At the higher concentration of N/OFQ 10(-6) M, the inhibition of prestimulated SRIF secretion (-58+/-6%; p<0.05 vs. GIP) is not influenced by the NOP receptor antagonist at the concentration of 10(-6) M (-49+/-9%; ns vs. GIP and N/OFQ) and 10(-5) M (-69+/-10%; ns vs. GIP and N/OFQ), respectively. On the other hand, infusion of naloxone 10(-6) M attenuates the inhibitory effect of N/OFQ 10(-6) M significantly (-21+/-6%; p<0.05 vs. GIP and N/OFQ).Thus, N/OFQ is an inhibitor of gastric somatostatin secretion. At the lower dose, this effect is transmitted via NOP receptors, while at the higher dose of 10(-6) M, the effect is at least in part mediated via opiate receptors.  相似文献   

8.
The effect on gastrin and somatostatin release in sheep of stimulatory and inhibitory peptides and pharmacological agents was investigated using an in vitro preparation of ovine antral mucosa. Carbachol stimulated gastrin release in a dose-dependent manner but had no effect on somatostatin release. As atropine blocked the effect of carbachol, cholinergic agonists appear to stimulate gastrin secretion directly through muscarinic receptors on the G-cell and not by inhibition of somatostatin secretion. Both vasoactive-intestinal peptide (VIP) and gastric-inhibitory peptide (GIP) increased somatostatin release but did not inhibit basal gastrin secretion, although VIP was effective in reducing the gastrin response to Gastrin-releasing peptide (GRP). Porcine and human GRP were stimulatory to gastrin secretion in high doses but bombesin was without effect. The relative insensitivity to GRP (not of ovine origin) previously reported from intact sheep may be caused either by a high basal release of somatostatin or by the ovine GRP receptor or peptide differing from those of other mammalian species.  相似文献   

9.
5-Hydroxytryptamine (serotonin, 5-HT) is a hormone and neurotransmitter regulating gastrointestinal functions. 5-HT receptors are widely distributed in gastrointestinal mucosa and the enteric nervous system. Duodenal acidification stimulates not only the release of both 5-HT and secretin but also pancreatic exocrine secretion. We investigated the effect of 5-HT receptor antagonists on the release of secretin and pancreatic secretion of water and bicarbonate induced by duodenal acidification in anesthetized rats. Both the 5-HT(2) receptor antagonist ketanserin and the 5-HT(3) receptor antagonist ondansetron at 1-100 microg/kg dose-dependently inhibited acid-induced increases in plasma secretin concentration and pancreatic exocrine secretion. Neither the 5-HT(1) receptor antagonists pindolol and 5-HTP-DP nor the 5-HT(4) receptor antagonist SDZ-205,557 affected acid-evoked release of secretin or pancreatic secretion. None of the 5-HT receptor antagonists affected basal pancreatic secretion or plasma secretin concentration. Ketanserin or ondansetron at 10 microg/kg or a combination of both suppressed the pancreatic secretion in response to intravenous secretin at 2.5 and 5 pmol x kg(-1) x h(-1) by 55-75%, but not at 10 pmol x kg(-1) x h(-1). Atropine (50 microg/kg) significantly attenuated the inhibitory effect of ketanserin on pancreatic secretion but not on the release of secretin. These observations suggest that 5-HT(2) and 5-HT(3) receptors mediate duodenal acidification-induced release of secretin and pancreatic secretion of fluid and bicarbonate. Also, regulation of pancreatic exocrine secretion through 5-HT(2) receptors may involve a cholinergic pathway in the rat.  相似文献   

10.
The release of immunoreactive (ir) dynorphin (DYN) and alpha-neoendorphin (ir-ANEO) from the isolated perfused rat duodenum was demonstrated using specific radioimmunoassays (RIAs). Depolarization of the tissue by increasing the potassium (K+) concentration up to 108 mM enhanced the release of ir-DYN and ir-ANEO in Ca2+-dependent manner. Administration of the serotonin-releasing agent fenfluramine (10(-6) M) and the serotonin receptor agonist m-chlorophenylpiperazine (m-CPP, 10(-6) M) stimulated the release of ir-DYN and ir-ANEO from the duodenum. A subsequent study revealed that serotonin (5-HT, 10(-6)-10(-4) M) induced a dose-dependent increase in the release of ir-DYN and ir-ANEO from the duodenum. The effect of 5-HT on the release of ir-DYN and ir-ANEO from the duodenum was antagonized by 5-HT antagonist cyproheptadine (10(-6) M). The presence of dynorphin and the related peptides in the gastrointestinal tract (GIT) and their release from the duodenum in vitro indicate that these peptides may act as transmitters involved in some GIT functions. Furthermore, our results suggest that at least part of 5-HT effects on the GIT may be mediated by the release of dynorphin and the related peptides.  相似文献   

11.
Secretion of the gut hormone glucagon-like peptide-1 (GLP-1) is stimulated by meal ingestion. The response is rapid, suggesting a stimulatory pathway elicited from the upper gastrointestinal area. In pigs, we have been unable to demonstrate a neural stimulatory pathway, but GLP-1 secretion is regulated by local somatostatin secretion. In search for an endocrine pathway, we studied the effect of a range of concentrations of cholecystokinin octapeptide (26-33) (CCK 8), gastric inhibitory peptide 1-42 (GIP), secretin, motilin, calcitonin gene-related peptide (CGRP), and the modified amino acid, 5-hydroxytryptamine (serotonin, 5-HT) on GLP-1 and somatostatin release from isolated perfused segments of porcine ileum.GLP-1 secretion was stimulated by 1 nM CCK 8 and 10 nM GIP, but suppressed by 1 nM motilin and 1 microM 5-HT. Secretin and CGRP had no effect. Somatostatin secretion was stimulated by CCK 8 at 1 and 10 nM, by GIP at 1 and 10 nM and by 10 nM CGRP. Secretin, 5-HT and motilin had no effect on somatostatin secretion.We conclude that CCK 8 and GIP 1-42 stimulated GLP-1 secretion, but only in concentrations greatly exceeding normal postprandial concentrations. Thus, we find it unlikely that endocrine agents from the duodenum regulate GLP-1 secretion in pigs.  相似文献   

12.
Bombesin-like immunoreactivity (BLI) has been demonstrated in neurons of the gastrointestinal tract and gastric BLI secretion can be demonstrated in response to the classical neurotransmitter acetylcholine. Since structurally related peptides VIP, PHI and GRF have to be considered as peptidergic neurotransmitters it was of interest to determine their effect on gastric BLI secretion. Additionally, somatostatin (SLI) and gastrin secretion was examined. The isolated stomach of overnight fasted rats was perfused with Krebs-Ringer buffer via the celiac artery and the effluent was collected via the portal vein. The gastric lumen was perfused with isotonic saline at pH7 or pH2. All four peptides were tested at a dose of 10(-11) M and 10(-8) M at both pH levels and in addition the effect of VIP and PHI was examined at 10(-14) M and 10(-12) M during luminal pH2. At luminal pH7 VIP and PHI stimulated SLI release at 10(-8) M but had no effect on BLI or gastrin secretion. rGRF and hpGRF were both ineffective on SLI and gastrin release while rGRF inhibited and hpGRF stimulated BLI secretion. This effect was not dose related. At luminal pH2 all four peptides stimulated BLI secretion. Stimulation by PHI was already observed at a dose of 10(-14) M while VIP elicited a stimulatory effect at 10(-12) M. PHI at the two lowest concentrations of 10(-14) and 10(-12) M elicited a stimulation of SLI and gastrin release while the same doses of VIP and the higher doses of all four peptides had no effect on SLI and gastrin secretion at an acidic intraluminal pH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Blockade of NMDA receptors by intracortical infusion of 3-( R )-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP) increases glutamate (GLU) and serotonin (5-HT) release in the medial prefrontal cortex and impairs attentional performance in the 5-choice serial reaction time task. These effects are prevented by the 5-HT2A receptor antagonist, ( R )-(+)-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidine methanol (M100907). We explored the roles of endogenous 5-HT and 5-HT1A and 5-HT2C receptors in the mechanisms by which M100907 suppresses CPP-induced release of cortical GLU and 5-HT using in vivo microdialysis. CPP raised extracellular GLU and 5-HT by about 250% and 170% respectively. The 5-HT synthesis inhibitor, p -chlorophenylalanine (300 mg/kg), prevented M100907 suppressing CPP-induced GLU release. The effect of M100907 on these rises of GLU and 5-HT and attentional performance deficit was mimicked by the 5-HT2C receptor agonist, ( S )-2-(6-chloro-5-fluoroindol-1-yl)-1-methylethylamine fumarate, (Ro60-0175, 30 μg/kg) while intra-mPFC (SB242084, 6-chloro-5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-indoline, 0.1 μM), a 5-HT2C receptor antagonist, prevented the effect of M100907 on extracellular GLU. The 5-HT1A receptor antagonist, N -[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]- N -(2-pyridinyl)cyclohexane carboxenide trihydrochloride (100 μM) abolished the effect of M100907 on the CPP-induced 5-HT release. The data show that blockade of 5-HT2A receptors is not sufficient to suppress the CPP-induced rise of extracellular GLU and 5-HT and suggest that M100907 suppresses GLU release induced by CPP by enhancing the action of endogenous 5-HT on 5-HT2C receptors.  相似文献   

14.
Bombesin-like peptides as well as receptor-independent activators were tested for their effect on gastrin release from acutely dispersed rat gastric G-cells. The amphibian peptide bombesin as well as its mammalian analogues neuromedin B and neuromedin C stimulated gastrin release. Maximal responses were achieved with 10(-9) M bombesin (191.0 +/- 16.8% of basal release), 10(-8) M neuromedin C(205.9 +/- 17.6%) and 10(-7) M neuromedin B (162.2 +/- 10.4%), respectively. The phorbol ester 12-O-tetradecanoyl-phorbol 13-acetate (TPA) and the synthetic diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG) are receptor-independent activators of the protein kinase C. Both TPA (10(-6) M) and OAG (10(-5) M) stimulated gastrin release to 214.0 +/- 29.3% and 198.2 +/- 20.8% of basal, respectively. Calcium ionophore A23187 (10(-5) M) was the most effective stimulant tested (364.7 +/- 39.6%). Its effect was reversed by the calmodulin antagonist W 7 (10(-6)-10(-5) M). Finally, forskolin (10(-5) M), a direct activator of cAMP-formation, as well as the cAMP-analogue dbcAMP (10(-3) M) induced gastrin release. IN conclusion, neuromedin B is less potent and less effective than neuromedin C and bombesin in stimulating rat gastric G-cells. In addition, gastrin release is activated by calcium- and phospholipid-dependent as well as by cAMP-induced cellular signal transduction mechanisms.  相似文献   

15.
Primary anterior pituitary cell cultures were utilized to study the influence of serotonin (5-HT) directly on the pituitary. Cells incubated with 10(-5) and 10(-4) M 5-HT exhibited a significant prolactin (Prl) release, whereas cells incubated with 10(-10) to 10(-6) M 5-HT did not. Cells incubated with 10(-10) to 10(-4) M quipazine (5-HT agonist) or methysergide (MES; 5-HT antagonist) did not release Prl in amounts greater/less (P greater than 0.01) than spontaneous release. Luteinizing hormone (LH) release from cells incubated in the presence of 5-HT, quipazine, or MES was similar to spontaneous release. The hypothalamic extract-induced Prl and LH release from cells was not influenced by quipazine, but Prl release was diminished in a dose-related fashion by MES. The influence of 5-HT on hypothalamic induction of Prl and LH release was investigated utilizing in vitro culture of hypothalamic fragments (HF). Media samples from HF incubated with 10(-6) and 10(-4) M 5-HT induced a release of Prl. Media samples from HF incubated with 10(-4) M MES induced less Prl release than media samples from control fragments. When HF were incubated with both 10(-4) M 5-HT and 10(-4) M MES, the expected 5-HT-mediated Prl release was not evident. These culturing situations had no influence on LH release. In vitro Prl release from pituitary cells of the young turkey was stimulated through 5-HT activity at the hypothalamus, but not by direct 5-HT action on the pituitary cells.  相似文献   

16.
Bombesin, acetylcholine, prostaglandins and somatostatin are all thought to be involved in the regulation of gastrin release and gastric secretion. We have studied the effects of low doses of atropine, 16-16(Me)2-prostaglandin E2 (PGE2) and somatostatin-14 on bombesin-stimulated gastrin release and gastric acid and pepsin secretion in conscious fistula dogs. For reference, synthetic gastrin G-17 was studied with and without somatostatin. Bombesin, in a dose-related manner, increased serum gastrin, which in turn stimulated gastric acid and pepsin secretion in a serum gastrin, concentration-dependent manner. Somatostatin inhibited gastrin release by bombesin as well as the secretory stimulation by G-17; the combination of sequential effects resulted in a marked inhibition of bombesin-stimulated gastric acid and pepsin secretion. PGE2 also strongly inhibited gastrin release and acid and pepsin secretion. Atropine had no significant effect on gastrin release, but greatly inhibited gastric secretion. Thus somatostatin and PGE2 inhibited at two sites, gastrin release and gastrin effects, while atropine affected only the latter.  相似文献   

17.
Somatostatin and gastrin release into the gastric lumen in rats   总被引:1,自引:0,他引:1  
Somatostatin and gastrin release into the gastric lumen was investigated in anaesthetized, vagally intact rats. The stomach was perfused at a flow rate of 0.5 mL.min-1. During perfusion with 0.1 M HCl or buffers of varying pH the somatostatin ans gastrin concentrations in the perfusate were less than 10 pg.mL -1 and approximately 30 pg.mL-1, respectively. Peptone caused a gastrin concentrations in the perfusate were less than 10 pg.mL-1 and approximately 30 pg.mL-1, respectively. Peptone caused a slight pH-independent increase in somatostatin release; gastrin release was unchanged despite an increase in serum gastrin from a basal of 15 +/- 4 to 155 +/- 34 pg.mL-1 during peptone stimulation. intravenous infusion of carbachol (1 microgram.kg-1.min-1) strongly stimulated luminal somatostatin and gastrin release (from 5 +/- 1 to 192 +/- 52 pg.mL-1 and from 27 +/- 5 to 198 +/- 41 pg.mL-1, respectively) during perfusion with 0.1 M HCl. Phosphate buffer perfusion at pH 7.5 abolished the cholinergic-mediated somatostatin release but the gastrin response was unaffected. It is suggested that changes of luminal hormone concentrations in the rat stomach do not reflect the secretory activity of the endocrine cells in the gastric mucosa.  相似文献   

18.
K Kawakubo  D H Coy  J H Walsh  Y Taché 《Life sciences》1999,65(10):PL115-PL120
Urethane increases the release of somatostatin (SRIF) which inhibits gastric acid secretion. The SRIF monoclonal antibody, CURE.S6 and the novel sst2 antagonist, PRL-2903 injected intravenously at maximal effective doses increased gastric acid secretion by 2 and 10 fold respectively from basal values within 30 min in urethane-anesthetized rats. Plasma gastrin levels were elevated 2.5 fold within 15 min by PRL-2903 (1.3 micromol/kg, i.v.). These data indicate that the low gastrin and acid secretion levels induced by urethane result from endogenous SRIF acting on sst2 and that PRL-2903 is a valuable SRIF antagonist to assess sst2 mediated events.  相似文献   

19.
Autoregulatory mechanisms affecting serotonin [5-hydroxytryptamine (5-HT)] release and synthesis during the early period of development were investigated in dissociated cell cultures raised from embryonic rostral rat rhombencephalon. The presence of 5-HT1A and 5-HT1B receptors in serotoninergic neurons was assessed using binding assays. The involvement of 5-HT1A and 5-HT1B receptors in the control of the synthesis and release of [3H]5-HT was studied using biochemical approaches with several serotoninergic receptor ligands. A mean decrease of 30% in [3H]5-HT synthesis and release was observed in the presence of 5-HT (10(-8) M), the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), the 5HT1B/1A agonist 5-methoxy-3-(1,2,5,6-tetrahydro-4-pyridinyl)-1H-indole (RU 24969), the 5-HT1B agonist 3-(1,2,5,6-tetrahydropyrid-4-yl)pyrrolo[3,2-b]pyrid-5-one (CP-93,129), and the 5-HT(1D/1B) agonist sumatriptan. Inhibition of 5-HT synthesis and release induced by 8-OH-DPAT was blocked by chiral N-tert-butyl-3-[1-[1-(2-methoxy)phenyl]piperazinyl]-1-phenylpropionam ide dihydrochloride quaternary-hydrate (WAY 100135) (10(7) M) or methyl 4-[4-[4-(1,1,3-trioxo-2H-1,2-benzoisothiazol-2-yl)butyl]-1-p iperazinyl]-1Hindole-2-carboxylate (SDZ 216-525) (10(-7)M), and that of CP-93,129 was blocked by methiothepin (10(-7) M). Paradoxically, extracellular levels of [3H]5-HT increased in the presence of 8-OH-DPAT and RU 24969 at 10(-6) M. 5-HT uptake experiments showed that these two agonists interacted with the 5-HT transporter. 5-HT1 binding sites (620 fmol/mg of protein) and 5-HT1A (482 fmol/mg of protein) and 5-HT1B (127 fmol/mg of protein) receptors were detected in 12-day in vitro cell cultures. Experiments carried out with tetrodotoxin suggested that 5-HT1A receptors are located on nerve cell bodies, whereas 5-HT1B receptors are located on the nerve terminals. We concluded that autoregulatory mechanisms involving 5-HT1A and 5-HT1B autoreceptors are functionally mature in cells from rostral raphe nuclei during the early period of development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号