首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of osteoblasts and endothelial cells plays a pivotal role in osteogenesis. This interaction has been extensively studied using their direct co-culture in vitro. However, co-culture experiments require clear discrimination between the two different cell types in the mixture, but this was rarely achieved. This study is the first to use fluorescence-activated cell sorting (FACS) for the separation and quantitative analysis of the proliferation and differentiation of MG-63 cells grown in direct co-culture with human umbilical vein endothelial cells (HUVECs). The cells of the MG-63 cell line have properties consistent with the characteristics of normal osteoblasts. We labeled HUVECs with fluorescent antibody against CD31 and used FACS to measure the proportions of each cell type and to separate them based on their different fluorescence intensities. The rate of proliferation of the MG-63 cells was estimated based on a count of the total viable cells and the proportion of MG-63 cells in the mixture. The mRNA expression levels of the osteoblast differentiation markers alkaline phosphatase (ALP), collagen type 1 (Coll-1) and osteocalcin (OC) in the MG-63 cells were measured via real-time PCR after the separation via FACS. We found that HUVECs stimulated the proliferation of the MG-63 cells after 72 h of co-culture, and inhibited it after 120 h of co-culture. The mRNA expression levels of ALP and Coll-1 significantly increased, whereas that of OC significantly decreased in MG-63 after co-culture with HUVECs. Using FACS for the quantitative analysis of the proliferation and differentiation of osteoblasts directly interacting with endothelial cells could have merit for further co-culture research.  相似文献   

2.
Cartilage graft is considered to be useful in repairing chondral or osteochondral defects. One method of the cartilage graft is achieved by autologous chondrocyte transplantation following cell culture. However, chondrocytes change their phenotype during culture. We used costal chondrocytes cultured over agarose (suspension culture) as a source of graft materials. The suspension-cultured chondrocytes formed aggregate in culture. We first examined the expressions of cartilage-specific matrices of cultured chondrocytes after two weeks in culture. The chondrocytes cultured over agarose expressed more type II collagen mRNA than those cultured on plastic dishes did after two weeks in culture. Safranin O staining showed the presence of glycosaminoglycans in the chondrocyte culture over agarose, while glycosaminoglycans were not observed in the culture on plastic dishes. We then examined the changes of rat articular osteochondral defects after transplantation of suspension-cultured chondrocytes. The aggregate of suspension-cultured chondrocytes was easily picked up with forceps and transplanted in the osteochondral defects. The defects were filled with safranin O-stained hyaline cartilage tissue two weeks after chondrocyte transplantation. On the contrary, the fibrous materials, which were not stained with safranin O, were observed in the control defects. These results suggest that the suspension-cultured chondrocytes are useful for autologous cartilage grafts by preserving chondrocyte phenotype.  相似文献   

3.
One of the crucial steps in endochondral bone formation is the replacement of a cartilage matrix produced by chondrocytes with bone trabeculae made by osteoblasts. However, the precise sources of osteoblasts responsible for trabecular bone formation have not been fully defined. To investigate whether cells derived from hypertrophic chondrocytes contribute to the osteoblast pool in trabecular bones, we genetically labeled either hypertrophic chondrocytes by Col10a1-Cre or chondrocytes by tamoxifen-induced Agc1-CreERT2 using EGFP, LacZ or Tomato expression. Both Cre drivers were specifically active in chondrocytic cells and not in perichondrium, in periosteum or in any of the osteoblast lineage cells. These in vivo experiments allowed us to follow the fate of cells labeled in Col10a1-Cre or Agc1-CreERT2 -expressing chondrocytes. After the labeling of chondrocytes, both during prenatal development and after birth, abundant labeled non-chondrocytic cells were present in the primary spongiosa. These cells were distributed throughout trabeculae surfaces and later were present in the endosteum, and embedded within the bone matrix. Co-expression studies using osteoblast markers indicated that a proportion of the non-chondrocytic cells derived from chondrocytes labeled by Col10a1-Cre or by Agc1-CreERT2 were functional osteoblasts. Hence, our results show that both chondrocytes prior to initial ossification and growth plate chondrocytes before or after birth have the capacity to undergo transdifferentiation to become osteoblasts. The osteoblasts derived from Col10a1-expressing hypertrophic chondrocytes represent about sixty percent of all mature osteoblasts in endochondral bones of one month old mice. A similar process of chondrocyte to osteoblast transdifferentiation was involved during bone fracture healing in adult mice. Thus, in addition to cells in the periosteum chondrocytes represent a major source of osteoblasts contributing to endochondral bone formation in vivo.  相似文献   

4.
Chondrocytes and osteoblasts are two primary cell types in the skeletal system that are differentiated from common mesenchymal progenitors. It is believed that osteoblast differentiation is controlled by distinct mechanisms in intramembranous and endochondral ossification. We have found that ectopic canonical Wnt signaling leads to enhanced ossification and suppression of chondrocyte formation. Conversely, genetic inactivation of beta-catenin, an essential component transducing the canonical Wnt signaling, causes ectopic formation of chondrocytes at the expense of osteoblast differentiation during both intramembranous and endochondral ossification. Moreover, inactivation of beta-catenin in mesenchymal progenitor cells in vitro causes chondrocyte differentiation under conditions allowing only osteoblasts to form. Our results demonstrate that beta-catenin is essential in determining whether mesenchymal progenitors will become osteoblasts or chondrocytes regardless of regional locations or ossification mechanisms. Controlling Wnt/beta-catenin signaling is a common molecular mechanism underlying chondrocyte and osteoblast differentiation and specification of intramembranous and endochondral ossification.  相似文献   

5.
The infiltration of adipocytes in osteoporotic patients' bone marrow suggests an important regulatory function of bone marrow fat on the development of aged bone. Therefore, we have examined the effects of adipocytes derived from bone mesenchymal stem cell (MSC) on osteoblast differentiation using two different co-culture modes (direct mode and indirect mode). Alkaline phosphatase (ALP)-positive areas and mineralized areas of MSC-derived osteoblasts decrease similarly in the two co-culture modes as the amount of MSC-derived adipocytes increases, suggesting that the crosstalk between adipocytes and osteoblasts may be mainly through secretory factors in the medium. To further understand the molecular mechanisms, both mRNA and protein expressions in osteoblasts in the lower layer of the indirect mode were analyzed, leading to identification of 12 differential genes/proteins. Among them, S100A6 and calreticulin are possibly related to bone formation. S100A6 was down-regulated and calreticulin was up-regulated as MSC-derived adipocytes increased. Similarly, differential expression of these proteins was also observed in bone tissue slides from young (1-month-old) and old (6-month-old) mice. The expression level of β-catenin in osteoblasts of bone tissues was lower in 6-month-old mice compared to 1-month-old mice. Total TGF-β analyzed with antibody-based protein microarray and active TGF-β analyzed with ELISA in the co-cultured cell medium increased consistently as the amount of adipocytes increased. Taken together, our results suggest that MSC-derived adipocytes may regulate osteoblast differentiation in the aged bone through TGF-β-mediated canonical Wnt signaling.  相似文献   

6.
Allografting and autografting of osteochondral tissues is a promising strategy to treat articular cartilage lesions in damaged joints. We developed a new model of fresh osteochondral allografting using the entire rabbit trochlea. The objective of the current study was to demonstrate that this model would achieve reproducible graft-host healing and maintain normal articular cartilage histologic, immunolocalization, and biochemical characteristics after transplantation under diverse storage and transplantation conditions. New Zealand white (n = 8) and Dutch belted (n = 8) rabbits underwent a 2-stage transplantation operation using osteochondral grafts that had been stored for 2 or 4 wk. Trochlear grafts harvested from the left knee were transplanted to the right knee as either autografts or allografts. Grafts were fixed with 22-gauge steel wire or 3-0 nylon suture. Rabbits were euthanized for evaluation at 1, 2, 4, 6, and 12 wk after transplantation. All grafts that remained in vivo for at least 4 wk demonstrated 100% interface healing by microCT. Trabecular bridging was present at the host-graft interface starting at 2 wk after transplantation, with no significant difference in cartilage histology between the various groups. The combined histology scores indicated minimal evidence of osteoarthritis. Immunostaining revealed that superficial zone protein was localized at the surface of all transplants. The rabbit trochlear model met our criteria for a successful model in regard to the ease of the procedure, low rate of surgical complications, relatively large articular cartilage surface area, and amount of host-graft bone interface available for analysis.  相似文献   

7.
Due to oxidation and adsorption of chloride and hydroxyl anions, the surface of titanium (Ti) implants is negatively charged. A possible mechanism of the attractive interaction between the negatively charged Ti surface and the negatively charged osteoblasts is described theoretically. It is shown that adhesion of positively charged proteins with internal charge distribution may give rise to attractive interaction between the Ti surface and the osteoblast membrane. A dynamic model of the osteoblast attachment is presented in order to study the impact of geometrically structured Ti surfaces on the osteoblasts attachment. It is indicated that membrane-bound protein complexes (PCs) may increase the membrane protrusion growth between the osteoblast and the grooves on titanium (Ti) surface and thereby facilitate the adhesion of osteoblasts to the Ti surface. On the other hand, strong local adhesion due to electrostatic forces may locally trap the osteoblast membrane and hinder the further spreading of osteointegration boundary. We suggest that the synergy between these two processes is responsible for successful osteointegration along the titanium surface implant.  相似文献   

8.
Osteoblast-osteoclast relationships in bone resorption are unclear. We investigated whether osteoblasts constitutively influence osteoclast activity. We employed a serum-free co-culture system in which chicken osteoclasts and chick calvaria or, alternatively, isolated chick osteoblasts were cultured in two different compartments separated by a 0.45 micron porous membrane permeable to soluble molecules. Osteoclastic bone resorption, evaluated by release of 3H-proline from prelabeled bone fragments, was significantly enhanced by bone cells resident in the calvaria, as well as by isolated osteoblasts. Stimulation was specific, since periosteal cells, or skin fibroblasts, failed to mimic osteoblast activity. Conditioned medium from osteoblast cultures stimulated osteoclast function in a similar manner, indicating that paracrine signals, capable of crossing the porous membrane separating the two compartments, are released by the bone forming cells.  相似文献   

9.
10.
11.
P He  KS Ng  SL Toh  JC Goh 《Biomacromolecules》2012,13(9):2692-2703
The ligament-bone interface is a complex structure that comprises ligament, fibrocartilage, and bone. We hypothesize that mesenchymal stem cells cocultured in between ligament and bone cells, on a hybrid silk scaffold with sections suitable for each cell type, would differentiate into fibrocartilage. The section of scaffold for osteoblast seeding was coated with hydroxyapatite. A trilineage coculture system (osteoblasts-BMSCs-fibroblasts) on a hybrid silk scaffold was established. RT-PCR results and immunohistochemistry results demonstrated that BMSCs cocultured between fibroblasts and osteoblasts had differentiated into the fibrocartilaginous lineage. The morphological change was also observed by SEM observation. A gradual transition from the uncalcified to the calcified region was formed in the cocultured BMSCs from the region that directly interacted with fibroblasts to the region that directly interacted with osteoblasts. The role of transforming growth factor β3 (TGF-β3) in this trilineage coculture model was also investigated by supplementing the coculture system with 10 ng/mL TGF-β3. The TGF-treated group showed similar results of fibrocartilaginous differentiation of BMSCs with coculture group without TGF-β3 supplement. However, no calcium deposition was found in the cocultured BMSCs in the TGF-treated group. This may indicate TGF-β3 delayed the mineralization process of chondrocytes.  相似文献   

12.
Glycosaminoglycans (GAG) and proteoglycans, which are components of the extracellular bone matrix, are also localized in and at the membrane of osteoblasts and in the pericellular matrix. Due to their interaction with several growth factors, water and cations these molecules play an important role in regulating proliferation and differentiation of osteoblasts and bone development. The aim of this study was to assess in vitro the effects of two chemically sulfated hyaluronan (HyaS) derivatives on the proliferation of rat calvarial osteoblasts and to compare with those of native hyaluronan (Hya) and natural sulfated GAG such as chondroitin-4-sulfate (C4S), chondroitin-6-sulfate (C6S), dermatan sulfate (DS) and heparan sulfate (HS). Moderately and highly sulfated HyaS derivatives caused a time-dependent reduction of osteoblast proliferation. The anti-proliferative effect of HyaS was accompanied by a cell cycle arrest in the G1 phase, but was not associated with cell death. Whereas non-sulfated high molecular weight (HMW)- and low molecular weight (LMW)-Hya as well as C4S, C6S, DS and HS showed no effect on the cell proliferation.  相似文献   

13.
Several biological studies have indicated that hedgehog signaling plays an important role in osteoblast proliferation and differentiation, and sonic hedgehog (SHH) expression is positively correlated with phosphorylated focal adhesion kinase (FAK) Tyr397. However, the relationship between them and their role in the process of normal fracture repair has not been clarified yet. Immunohistochemical analysis revealed that SHH and pFAK Tyr397 were expressed in bone marrow cells and that pFAK Tyr397 was also detected in ALP-positive osteoblasts near the TRAP-positive osteoclasts in the fracture site in the ribs of mice on day 5 after fracture. SHH and pFAK Tyr397 were detectable in osteoblasts near the hypertrophic chondrocytes on day 14. In vitro analysis showed that SHH up-regulated the expression of FAK mRNA and pFAK Tyr397 time dependently in osteoblastic MC3T3-E1 cells. Functional analysis revealed that 5 lentivirus encoding short hairpin FAK RNAs (shFAK)-infected MC3T3-E1 cell groups displayed a round morphology and decreased proliferation, adhesion, migration, and differentiation. SHH stimulated the proliferation and differentiation of MC3T3-E1 cells, but had no effect on the shFAK-infected cells. SHH also stimulated osteoclast formation in a co-culture system containing MC3T3-E1 and murine CD11b+ bone marrow cells, but did not affect the shFAK-infected MC3T3-E1 co-culture group. These data suggest that SHH signaling was activated in osteoblasts at the dynamic remodeling site of a bone fracture and regulated their proliferation and differentiation, as well as osteoclast formation, via FAK signaling.  相似文献   

14.
Reconstruction of articular cartilage defects using adult osteochondral allografts is an established clinical procedure, whose principal drawback is lack of lateral integration of the grafts to the surrounding tissue. Autologous chondrocytes transplantation is a sophisticated technique requiring cell culture and a staged operation. Its main draw back is the lack of mechanical strength early on. This study was conducted in order to evaluate the possibility of using embryonal epiphyses as a cartilage reconstruction tissue. A xenogeneic human to rabbit sub-acute osteochondral defect model was designed to evaluate the possibility of allogeneic implantation in humans. The following procedures were perfomed (n = 5): transplantation of 1. live epiphyses 2. live epiphyses with autogeneic periosteum 3. de-vitalized epiphyses and 4. devitalized epiphyses with autogeneic articular chondrocytes. A fifth control group did not receive any implant. Animals in groups 1 and 2 had a viable reconstruction of the articular surface with little evidence of rejection and without pannus formation. Animals in groups 3 and 4 became severely arthritic and the graft was resorbed. Nitric oxide synthase accumulation was reduced in group 1 and 2 as compared to groups 3, 4, and 5, indicating a joint preserving function of the epiphyseal grafts. Epiphyseal grafts appear to be a feasible procedure for reconstruction of articular cartilage defects even in a xenogeneic model. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Indian hedgehog (Ihh) is indispensable for development of the osteoblast lineage in the endochondral skeleton. In order to determine whether Ihh is directly required for osteoblast differentiation, we have genetically manipulated smoothened (Smo), which encodes a transmembrane protein that is essential for transducing all Hedgehog (Hh) signals. Removal of Smo from perichondrial cells by the Cre-LoxP approach prevents formation of a normal bone collar and also abolishes development of the primary spongiosa. Analysis of chimeric embryos composed of wild-type and Smo(n/n) cells indicates that Smo(n/n) cells fail to contribute to osteoblasts in either the bone collar or the primary spongiosa but generate ectopic chondrocytes. In order to assess whether Ihh is sufficient to induce bone formation in vivo, we have analyzed the bone collar in the long bones of embryos in which Ihh was artificially expressed in all chondrocytes by the UAS-GAL4 bigenic system. Although ectopic Ihh does not induce overt ossification along the entire cartilage anlage, it promotes progression of the bone collar toward the epiphysis, suggesting a synergistic effect between ectopic Ihh and endogenous factors such as the bone morphogenetic proteins (BMPs). In keeping with this model, Hh signaling is further found to be required in BMP-induced osteogenesis in cultures of a limb-bud cell line. Taken together, these results demonstrate that Ihh signaling is directly required for the osteoblast lineage in the developing long bones and that Ihh functions in conjunction with other factors such as BMPs to induce osteoblast differentiation. We suggest that Ihh acts in vivo on a potential progenitor cell to promote osteoblast and prevent chondrocyte differentiation.  相似文献   

16.
We isolated and characterized a cDNA for the N-terminal half of the eukaryotic initiation of translation factor 2 (cIF2) during a screen of chicken osteoblast cDNAs. The apparent size of the message for this protein, approximately 5.6 kb, is slightly larger in size than that for human IF2 (hIF2). There is a high degree of sequence similarity between the human and chicken N-terminal portions of the protein that extends to the encoding nucleotide sequence. The tissue specific expression pattern for cIF2 and hIF2 are similar, being moderately abundant in brain, liver, and skeletal muscle, and detectable in kidney, chondrocytes, and freshly isolated osteoblasts. The ratio of message for cIF2 to that of beta-actin was 0.10 and 0.18 for liver and brain. Message levels peak in osteoblasts between 8 and 12 days of culture, coinciding with high levels of matrix protein synthesis. At peak expression, the ratio of cIF2:beta-actin for 8 day osteoblasts was 0.76. Treatment of osteoblast cultures with cycloheximide markedly reduces the level of cIF2 message indicating that novel protein synthesis is required for its expression. Hybridization of RNA samples from either chicken osteoblasts or a human osteoblast cell line with a probe for a subunit of human eukaryotic initiation of translation factor 2 (eIF2alpha), the housekeeping initiation factor, indicates that levels of eIF2 remain low. With hIF2, cIF2 represents the only other vertebrate homolog of IF2 for which a major portion of the coding sequence has been identified. This is the first report of regulated expression for a eukaryotic IF2 and is the first demonstration of its abundance in osteoblasts.  相似文献   

17.

Aim

The aim of this work was to evaluate the effects of carnosol, a rosemary polyphenol, on pro-inflammatory and catabolic mediators of cartilage breakdown in chondrocytes and via bone-cartilage crosstalk.

Materials and Methods

Osteoarthritic (OA) human chondrocytes were cultured in alginate beads for 4 days in presence or absence of carnosol (6 nM to 9 μM). The production of aggrecan, matrix metalloproteinase (MMP)-3, tissue inhibitor of metalloproteinase (TIMP)-1, interleukin (IL)-6 and nitric oxide (NO) and the expression of type II collagen and ADAMTS-4 and -5 were analyzed. Human osteoblasts from sclerotic (SC) or non-sclerotic (NSC) subchondral bone were cultured for 3 days in presence or absence of carnosol before co-culture with chondrocytes. Chondrocyte gene expression was analyzed after 4 days of co-culture.

Results

In chondrocytes, type II collagen expression was significantly enhanced in the presence of 3 μM carnosol (p = 0.008). MMP-3, IL-6, NO production and ADAMTS-4 expression were down-regulated in a concentration-dependent manner by carnosol (p<0.01). TIMP-1 production was slightly increased at 3 μM (p = 0.02) and ADAMTS-5 expression was decreased from 0.2 to 9 μM carnosol (p<0.05). IL-6 and PGE2 production was reduced in the presence of carnosol in both SC and NSC osteoblasts while alkaline phosphatase activity was not changed. In co-culture experiments preincubation of NSC and SC osteoblasts wih carnosol resulted in similar effects to incubation with anti-IL-6 antibody, namely a significant increase in aggrecan and decrease in MMP-3, ADAMTS-4 and -5 gene expression by chondrocytes.

Conclusions

Carnosol showed potent inhibition of pro-inflammatory and catabolic mediators of cartilage breakdown in chondrocytes. Inhibition of matrix degradation and enhancement of formation was observed in chondrocytes cocultured with subchondral osteoblasts preincubated with carnosol indicating a cross-talk between these two cellular compartments, potentially mediated via inhibition of IL-6 in osteoblasts as similar results were obtained with anti-IL-6 antibody.  相似文献   

18.
We have used c-Fos transgenic mice which develop osteosarcomas to determine the expression patterns of cyclins, cyclin-dependent kinases (CDKs), and cyclin-dependent kinase inhibitors (CKIs) in different bone cell populations in order to define the potential mechanisms of c-Fos transformation. Immunohistochemical analysis in embryonic and early postnatal bone demonstrated that cyclin E and its kinase partner CDK2 were expressed specifically in bone-forming osteoblasts. Cyclin D1 expression was absent despite high levels of CDK4 and CDK6, and the CKI p27 was expressed in chondrocytes, osteoclasts, and at lower levels in osteoblasts. Following activation of the c-fos transgene in vivo and before overt tumor formation, cyclin D1 expression increased dramatically and was colocalized with exogenous c-Fos protein specifically in osteoblasts and chondrocytes, but not in osteoclasts. Prolonged activation of c-Fos resulted in osteosarcoma formation wherein the levels of cyclin D1, cyclin E, and CDKs 2, 4, and 6 were high in a wide spectrum of malignant cell types, especially in transformed osteoblasts. The CKI p27 was expressed at very high levels in bone-resorbing osteoclasts, and to a lesser extent in chondrocytes and osteoblasts. These in vivo observations suggest that cyclin D1 may be a target for c-Fos action and that elevation of cyclin D1 in osteoblasts which already express cyclin E/CDK2 and the cyclin D1 partners CDKs 4 and 6, may predispose cells to uncontrolled cell growth leading to osteosarcoma development. This study implicates altered cell cycle control as a potential mechanism through which c-Fos causes osteoblast transformation and bone tumor formation. Dev. Genet. 22:386–397, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
Bone has an enormous capacity for growth, regeneration, and remodeling. This capacity is largely due to induction of osteoblasts that are recruited to the site of bone formation. The recruitment of osteoblasts has not been fully elucidated, though the immediate environment of the cells is likely to play a role via cell– matrix interactions. We show here that heparin-binding growth-associated molecule (HB-GAM), an extracellular matrix–associated protein that enhances migratory responses in neurons, is prominently expressed in the cell matrices that act as target substrates for bone formation. Intriguingly, N-syndecan, which acts as a receptor for HB-GAM, is expressed by osteoblasts/osteoblast precursors, whose ultrastructural phenotypes suggest active cell motility. The hypothesis that HB-GAM/N-syndecan interaction mediates osteoblast recruitment, as inferred from developmental studies, was tested using osteoblast-type cells that express N-syndecan abundantly. These cells migrate rapidly to HB-GAM in a haptotactic transfilter assay and in a migration assay where HB-GAM patterns were created on culture wells. The mechanism of migration is similar to that previously described for the HB-GAM–induced migratory response of neurons. Our hypothesis that HB-GAM/N-syndecan interaction participates in regulation of osteoblast recruitment was tested using two different in vivo models: an adjuvant-induced arthritic model and a transgenic model. In the adjuvant-induced injury model, the expression of HB-GAM and of N-syndecan is strongly upregulated in the periosteum accompanying the regenerative response of bone. In the transgenic model, the HB-GAM expression is maintained in mesenchymal tissues with the highest expression in the periosteum. The HB-GAM transgenic mice develop a phenotype characterized by an increased bone thickness. HB-GAM may thus play an important role in bone formation, probably by mediating recruitment and attachment of osteoblasts/osteoblast precursors to the appropriate substrates for deposition of new bone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号