首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of binucleate cells, formed by the action of deoxyguanosine, are studied using three methods: in a population synchronized with hydroxyurea, by autoradiography after pulse-labelling, and in a sample of a cell population morphologically located at the M-G1, limit. Deoxyguanosine induces a slowing down in S and G2, independent of the inhibition of cytokinesis. It is only when it takes effect during the G2, stage that deoxyguanosine brings about the formation of binucleate cells.  相似文献   

2.
Continuous exposure of Ehrlich ascites tumour cells to argon-CO2 under in vitro conditions caused rapid cessation of cell proliferation. On fixing the O2 level at 10 ppm in the protective atmosphere (0.001% in comparison with about 20% in normoxic atmosphere), G1 and early S cells remained stationary while G2 cells continued to pass from G2 into mitosis, to remain in a non-growing state in G1 of the subsequent cycle. Re-aeration of cells following 12 h hypoxia induced up to 25% of the population to continue DNA synthesis without a preceding cell division, as revealed by flow-cytometric analysis. Supplementation of cells cultured under hypoxia with a combination of deoxynucleosides (100 microM deoxycytidine, 10 microM deoxyadenosine, 10 microM deoxyguanosine) was found to stimulate reprogression through the cycle, provided the residual oxygen tension in the protective atmosphere exceeded 40 ppm. The increase in the number of cells with a DNA content of more than 4 C and in the number of binucleate cells observed after re-aeration of hypoxic cells was not prevented by deoxynucleosides or by uridine, which were present in the medium either during hypoxia of from the beginning of reoxygenation. These results indicate that the development of polyploidy as a result of oxygen deficiency cannot be influenced by improvement of RNA and DNA synthetic precursors.  相似文献   

3.
In two different cell fusion experiments a synchronized population of HeLa cells, prelabeled with 3H-TdR, was fused with an unlabeled one using inactivated Sendai virus. In the first experiment, HeLa cells in early G2 phase which were exposed to either 4 °C, cycloheximide, actinomycin D or X-irradiation were fused separately with untreated and more advanced G2 cells. A comparison of the rates of mitotic accumulation (in the presence of Colcemid) for the various classes of mono- and binucleate cells revealed that the hybrid (binucleate) cells were intermediate between those of the advanced and the retarded parental types indicating that the chromosome condensing factors of the advanced component were diluted as a result of such fusion. The manner in which the retarding effects of actinomycin D and cycloheximide were reversed in the hybrid cells suggested that proteins had a major role as chromosome condensing factors in the G2 mitotic transition. In the second experiment, when S phase HeLa cells were fused with those in G2, the resulting heterophasic (S/G2) binucleate cells reached mitosis at about the same time as the homophasic (S/S) cells of the lagging parent indicating a complete dominance of the S over the G2 with regard to their progress towards mitosis. However, the addition of Mg2+ (2 × 10?2 M of MgCl2) to the medium helped the G2 nuclei to enter mitosis asynchronously, which consequently induced premature chromosome condensation (PCC) in the S phase component. These data suggested that in the heterophasic (S/G2) binucleate cells the S phase component caused decondensation of the G2 chromatin thus blocking it from entering into mitosis. This effect which did not appear to be dose-dependent could be neutralized and the G2 nuclei relieved from this repression by an external supply of Mg2+ ions.  相似文献   

4.
Stereology of Allium cepa root meristem cells was done to evaluate changes in the nuclear envelope during cell cycle. A naturally synchronous population was labelled as binucleate by caffeine inhibition of cytokinesis. Growth of the nuclear envelope preferentially occurs from mid G2 to the next mid G1, most probably in relation to the reforming sister nuclei after mitosis. On the other hand, the number of nuclear pores doubles from mid G1 to mid G2, their growth rate being higher in the first half of interphase (from mid G1 to mid S). Hence, the new nuclear envelope probably lacks nuclear pores, which appear later.  相似文献   

5.
Asynchronous cultures of ts12, an anchorage-dependent derivative of the thermosensitive Chinese hamster cell line ts111, show a rapid drop in [3H]thymidine incorporation with accumulation of the cells in the G1 and in the G2 phases of the cycle, when shifted from 34.5 to 39.4 degrees C. Shift-up experiments carried out after either isoleucine deprivation or synchronization at 39.4 degrees C, locate the execution point of a ts function in late G1 (2.5-3 h before S). However, stimulation of proliferation of a high density-arrested population allows a fraction of the cells to enter S. In addition to the G1 ts defect, ts12 expresses a slight cytokinesis defect at 39.4 degrees C (8-15% binucleate cells). The results suggest that altered processes are taking place at a post-metaphasic stage during the first hours after the shift-up. When populations are synchronized by a thymidine block and released at 39.4 degrees C, multinucleate cells in addition to binucleate cells are observed. Part of these multinucleate cells result from abnormal karyokinesis without inhibition of cytokinesis. Evidence is presented suggesting that excess thymidine allows the re-expression of the multinucleation phenotype of ts111.  相似文献   

6.
G2 arrest, binucleation, and single-parameter DNA flow cytometric analysis   总被引:1,自引:0,他引:1  
One important facet of flow cytometry involves the effects of pharmacological agents on cell cycle progression. Comparative G2 fraction perturbations were examined: effects of sodium butyrate on articular chondrocytes, effects of an antineoplastic agent (SOAZ) and an antirheumatic drug (D-penicillamine) on HeLa cells. Even though DNA flow cytometric analysis detects preferentially an induction of G2 arrest, the mode of action of these agents on the cell cycle is different. Sodium butyrate and D-penicillamine lead to an increase of binucleate cells due to cytokinesis perturbation. Because of similar fluorescence intensity, distinguishing G2 from binucleate GO/1 cells is not easily possible using DNA content measurement and reflects a failure of flow cytometry in the detection of binucleate cells. Rapid cell cycle analysis of single cells should contribute greatly to the study of pharmacological interactions, but DNA flow cytometric measurements obtained from cultured cells exposed to certain agents must be cautiously interpreted because those may interact on cytokinesis and induce artefacts in histogram interpretation.  相似文献   

7.
The cell-growth-inhibitory and phase-specific effects of D-penicillamine on cell-cycle progression were investigated using cell-proliferation patterns, quantitative cell-cycle analysis by flow cytometry, and determination of the mitotic index and binucleate cell fraction of normal (rabbit articular chondrocytes, L 809, rabbit fibroblasts) and transformed (HeLa, L 929) cells. D-penicillamine treatment resulted in an inhibition of growth within a dose range of 5 × 10?4 M to 7.5 × 10?3 M. Examination of DNA by flow cytometric analysis revealed that rabbit articular chondrocytes were preferentially arrested in the G0/1 phase of the cell cycle, whereas the other cell lines were blocked in the G2 + M phase; the increase in the proportion of cells with G2 + M DNA content was partially due to an enhancement of binucleate cells, resulting in a cytokinesis perturbation for HeLa and L 929 cells. These results showed that D-penicillamine affects cell proliferation through different events according to cell type.  相似文献   

8.
Cell Displacement Through the Columella of the Root Cap of Zea mays L   总被引:1,自引:0,他引:1  
BARLOW  P. W. 《Annals of botany》1978,42(4):783-790
Exposing roots of Zea mays to a solution of caffeine for 1 hinduces a small population of binucleate cells in the meristem.The progress of the binucleate cell population was then followed,in time, as it was displaced along the length of the cap columella.Since this method of marking cells seems to have no effect onthe subsequent pattern of cell proliferation in the cap meristem,the movement of the binucleate cells through the cap is inferredto be similar to the movement of cells in an undisturbed cap.The binculeate cells that persist in the cap are believed tobe cells that were engaged in their final mitosis at the timeof the caffeine treatment, so the time that it takes for themto appear at the edge of the cap is a measure of the periodfor which a cell is contained in the non–dividing portionof the tissue before being lost from the cap surface. In rootsof Zea grown at 22 °C cells take about 7 days to reach thetip of the cap columella and about 2 to 3 days to reach theflanks of the cap following their displacement from the capmeristem. Zea mays, root cap, cell displacement, binucleate cells  相似文献   

9.
The effects of timing and duration of cytochalasin B (CB) treatment on the kinetics of the initiation of DNA synthesis in mono- and binucleate HeLa cells, synchronized in the G1 phase of the cell cycle by the reversal of a mitotic block (N2O at 80 PSI), were studied. In the control, bi-, tri- and tetranucleate cells entered S phase slightly earlier than the mononucleate cells at a rate proportional to the number of their nuclei. The difference between any two adjacent sub-populations was less than 0.5 h. However, the binucleate cells produced by a 90 min CB treatment immediately after the reversal of the mitotic block exhibited a considerably shorter G1 period as compared to mononucleate cells (a difference of 1.5 h). This exaggerated difference in the duration of G1 period between mono- and binucleate cells disappeared when the CB treatment was delayed by 75 or 90 min indicating that it was an experimental artifact. From this study, we conclude that there is naturally some degree of nuclear cooperation in the multinucleate systems, particularly with regard to the initiation of DNA synthesis, which is not influenced by CB treatment.  相似文献   

10.
Studies on Ehrlich ascites tumor cells enriched in different cell cycle compartments by centrifugal elutriation have shown that after exclusion of oxygen, G1- and early S-phase cells are restricted from further cell cycle progression. On addition of a balanced mixture of deoxypyrimidine and deoxypurine nucleosides to these anaerobic cultures (70% in G1-phase, as determined by flow cytometry), the cells resumed DNA synthesis and passed through the cycle. After 24 h, 19% of the cell population was still in G1. This cell cycle traverse does not seem to depend on RNA and protein synthesis. Using colcemid, mitotic activities became more evident in the presence of deoxynucleosides 20 h after establishing the protective atmosphere (argon/CO2). In the absence of colcemid binucleate cells could be detected. This was not observed in unsupplemented anaerobic cells. The ultrastructural changes of mitochondria in anaerobic cells resembled those in nucleoside-stimulated anaerobic cells: enlargement in profiles is accompanied by a simplification of cristae and a pallor of the intramatrical compartment. In addition, two different appearances of mitochondrial structures were visible if cells were cultured in the presence of deoxynucleosides.  相似文献   

11.
The initiation of nuclear DNA synthesis has been studied in cytochalasin B (CB)-induced binucleate human diploid fibroblasts (WI-38 cells). Mitotic cells from different passage levels were rendered binucleate by a brief pulse of CB. The cells were then washed free of the drug, and DNA synthesis was studied by [3H]thymidine labeling. The results showed that, in a small percentage of binucleate cells, one nucleus was labeled (S phase) and the other nucleus was unlabeled (G1 phase). There was no significant difference in the percentage of these cells with increasing passage levels. The results of this study suggest that some WI-38 cells retire from the cell cycle at different passage levels, and thereby become refractory to inducers of nuclear DNA synthesis generated by sister cells in S phase.  相似文献   

12.
Cytochalasin B influences a variety of cellular events that are associated with the contractile microfilament system and the formation of binucleate cells. Along with the formation of binucleate cells, cytochalasin B also causes an acceleration of cells from G1 to S in the cell cycle. By pulsing the cytochalasin B for 30 minutes and allowing for a previously established lag time (17.5 hours) a stimulation of thymidine incorporation into DNA of proliferative epidermal and dermal cells was found in both control and stripped epidermis. Autoradiographic analysis confirmed that the stimulation was due to an increased number of basal cells accelerated from G1 to S phase. A minimal number of binucleate basal cells, 1 in 300, was observed, which suggests that the stimulated synthesis is independent of binucleate cell formation. The amount of stimulation is maximum with cytochalasin B concentration pulse between 5gamma and 30gamma/ml. The results suggest a possible link in coupling cell membrane and surface events with subsequent increased cell nuclei synthetic activity.  相似文献   

13.
Age-related alterations in the size of human hepatocytes   总被引:2,自引:0,他引:2  
Age-related alterations in the size of human hepatocytes (both mononuclear and binucleate forms), were studied in histological sections and in separated cells and nuclei using cytophotometrical and microspectrophotometrical methods. The following results were obtained: 1. The volume of nuclear DNA increased in proportion to nuclear size. The increase occurred in a group pattern reflecting nuclear polyploidization. 2. Cell size increased in proportion to nuclear size. Tetraploid cells (4C) were roughly two times greater than diploid cells (2C). 3. In most of the binucleate cells examined, the ploidy class of the two nuclei in a binucleate cell was observed to be equal. Heterogeneity of the ploidy class among the nuclei of a binucleate cell was present in less than 1% of total binucleate cells examined. The nuclear DNA volume of individual nuclei in binucleate cells appeared to be the same as that of mononuclear cells. 4. The cell size of binucleate cells corresponded with that of mononuclear cells whose ploidy class was the same as the sum of the ploidy classes of two nuclei of a binucleate cell. 5. The incidence of binucleate cells in the lobular periphery was about 4 to 6% in the third decade, and increased slightly with age up to 5 to 7% in the tenth decade. 6. The incidence of binucleate cells in the liver at different ages followed a similar pattern to that observed in mononuclear cells whose ploidy class was half of the sum of ploidy classes of the two nuclei of the binucleate cell.  相似文献   

14.
The relationship between binucleate cell formation and the loss of colony-forming ability was examined in several cultured mammalian cell lines irradiated with X rays. The maximum fraction of binucleate cells after X irradiation increased dose-dependently within the range in which reproductive cell death might predominate over interphase cell death. When the logarithm of percentage survival was plotted against the percentage binucleate cells, a similar correlation was found for all cell lines tested, with the exception of mouse leukemia L5178Y cells, the most radiosensitive cells used. These observations suggest that the fraction of binucleate cells in the cell population can serve as a measure of cellular radiation damage.  相似文献   

15.
In mated cultures (NC4 X V12) of Dictyostelium discoideum containing 1.0 mM CaCl2, cell fusion generates large numbers of binucleate cells which develop into zygote giant cells. In the absence of Ca2+, binucleate formation does not occur. When 1.0 mM CaCl2 is added to Ca2+-deficient cultures at 18 h, 50% of the cells fuse within 45 min producing large multinucleate syncytia. Small, presumptive gametes appear in Ca2+-deficient cultures and reach a peak of about 20% of the cell population by 10 h, but they maintain this plateau and do not fuse. Upon the addition of CaCl2, the presumptive gametes immediately fuse, producing binucleate cells which develop rapidly into morphologically distinct giant cells. Cell fusion continues, resulting in the formation of extremely large (40-80 microns diameter) multinucleate syncytia by 45 min. The induction of this extensive, synchronous cell fusion does not occur in the presence of other chloride salts and EGTA inhibits it, revealing that Ca+ is the regulatory ion.  相似文献   

16.
Failure of cells to cleave at the end of mitosis is dangerous to the organism because it immediately produces tetraploidy and centrosome amplification, which is thought to produce genetic imbalances. Using normal human and rat cells, we reexamined the basis for the attractive and increasingly accepted proposal that normal mammalian cells have a "tetraploidy checkpoint" that arrests binucleate cells in G1, thereby preventing their propagation. Using 10 microM cytochalasin to block cleavage, we confirm that most binucleate cells arrest in G1. However, when we use lower concentrations of cytochalasin, we find that binucleate cells undergo DNA synthesis and later proceed through mitosis in >80% of the cases for the hTERT-RPE1 human cell line, primary human fibroblasts, and the REF52 cell line. These observations provide a functional demonstration that the tetraploidy checkpoint does not exist in normal mammalian somatic cells.  相似文献   

17.
The cell composition of a population of human blood lymphocytes was studied after irradiation at doses of 5 cGy, 1.0 Gy and 5 cGy + 1.0 Gy and the use of a cytokinesis block. The frequencies of uni-, bi- and multinucleate lymphocytes with and without micronuclei (MN) were taken into account. By the standard criterion the frequency of binucleate lymphocytes with MN among binucleate lymphocytes--the donors were characterized as follows: in with reduction of radiosensitivity after irradiation with 5 cGy + 1.0 Gy as compared to the values of radiosensitivity after irradiation with 1.0 Gy only (an adaptive response, AR); in with no change of radiosensitivity after exposure to these doses (no AR); and with an increased ofradiosensitivity after exposure to these doses (syndrome of increased radiosensitivity, IRS). It was found that upon exposure to 1.0 Gy and 5 cGy + 1.0 Gy in some donors with AR, without AR and with IRS the total numbers of damaged cells in the population and the number of binucleate cells with MN were equal. This result calls in question the involvement of the repair mechanism in the alteration of radiosensitivity of lymphocytes in these donors. It was also observed that in the same donors a simultaneous increase (or a decrease in the case of IRS) of the portion of undamaged binucleate cells in the population took place. Our results demonstrate the existence of a new, populational, mechanism involved in the alteration of radiosensitivity after exposure to the adaptive and challenge doses.  相似文献   

18.
Binucleate cells were induced by treatment with methylxanthines. Nuclear volume increased rapidly in the early part of G1 but the increases were unequal in most pairs of sister nuclei. Treatment with 5-amino-uracil results in increases in nuclear volume; when cells with large nuclei divided they were induced to become binucleate. The sister nuclei of these binucleate cells also showed increases in mean volume and in the mean difference between their volumes. Even though they share the same cytoplasm, sister nuclei behave autonomously in terms of changes in volume.  相似文献   

19.
The processes of polyploidization in normal human liver parenchyma from 155 individuals aged between 1 day and 92 years were investigated by Feulgen-DNA cytophotometry. It was shown that polyploid hepatocytes appear in individuals from 1 to 5 years old. Up to the age of 50 years the accumulation rate of binucleate and polyploid cells is very slow, but subsequently hepatocyte polyploidization is intensified, and in patients aged 86–92 years the relative number of cells with polyploid nuclei is about 27%. Only a few hepatocytes in the normal human liver reach 16C and 8C×2 ploidy levels for mononucleate and binucleate cells respectively. Using a mathematical modeling method, it was shown that during postnatal liver growth the polyploidization process in human liver is similar to that in the rat, and that polyploid cells are formed mainly from binucleate cells. As in rats, prior to an increase in ploidy level, diploid human hepatocytes can pass several times through the usual mitotic cycles maintaining their initial ploidy level. After birth, only one in ten hepatocytes starting DNA synthesis enters the polyploidization process. At maturity about 60% of 2C-hepatocytes starting DNA synthesis divide by conventional mitosis, the rest dividing by acytokinetic mitosis leading to the formation of binucleate cells. During ageing the probability of hepatocyte polyploidization increases and in this period there are two polyploid or binucleate cells for every diploid dividing by conventional mitosis.  相似文献   

20.
I H Evans 《Cytobios》1976,16(62):115-124
Liver cells were isolated from rats undergoing active formation of tetraploid cells and prelabelled in their DNA with 14C thymidine. Autoradiography of the isolated cells showed that binucleate diploid cells, a major component of the parenchymal cell population at this time, are also active in DNA synthesis. These cells probably pass through mitosis and generate mononucleate tetraploid cells, the dominant cell type of mature rat liver, since the frequency of binucleate tetraploid cells is very low at this stage in rat liver development. The biological significance of liver polyploidy is discussed and it is suggested that this lies in enhanced resistance to mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号