首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic variants of mitochondrial DNA at the individual (heteroplasmy) and population (polymorphism) levels provide insight into their roles in multiple cellular and evolutionary processes. However, owing to the paucity of genome-wide data at the within-individual and population levels, the broad patterns of these two forms of variation remain poorly understood. Here, we analyze 1,804 complete mitochondrial genome sequences from Daphnia pulex, Daphnia pulicaria, and Daphnia obtusa. Extensive heteroplasmy is observed in D. obtusa, where the high level of intraclonal divergence must have resulted from a biparental-inheritance event, and recombination in the mitochondrial genome is apparent, although perhaps not widespread. Global samples of D. pulex reveal remarkably low mitochondrial effective population sizes, <3% of those for the nuclear genome. In addition, levels of population diversity in mitochondrial and nuclear genomes are uncorrelated across populations, suggesting an idiosyncratic evolutionary history of mitochondria in D. pulex. These population-genetic features appear to be a consequence of background selection associated with highly deleterious mutations arising in the strongly linked mitochondrial genome, which is consistent with polymorphism and divergence data suggesting a predominance of strong purifying selection. Nonetheless, the fixation of mildly deleterious mutations in the mitochondrial genome also appears to be driving positive selection on genes encoded in the nuclear genome whose products are deployed in the mitochondrion.  相似文献   

2.
The molecular mechanisms leading to asexuality remain little understood despite their substantial bearing on why sexual reproduction is dominant in nature. Here, we examine the role of hybridization in the origin and spread of obligate asexuality in Daphnia pulex, arguably the best‐documented case of contagious asexuality. Obligately parthenogenetic (OP) clones of D. pulex have traditionally been separated into ‘hybrid’ (Ldh SF) and ‘nonhybrid’ (Ldh SS) forms because the lactase dehydrogenase (Ldh) locus distinguishes the cyclically parthenogenetic (CP) lake dwelling Daphnia pulicaria (Ldh FF) from its ephemeral pond dwelling sister species D. pulex (Ldh SS). The results of our population genetic analyses based on microsatellite loci suggest that both Ldh SS and SF OP individuals can originate from the crossing of CP female F1 (D. pulex × D. pulicaria) and backcross with males from OP lineages carrying genes that suppress meiosis specifically in female offspring. In previous studies, a suite of diagnostic markers was found to be associated with OP in Ldh SS D. pulex lineages. Our association mapping supports a similar genetic mechanism for the spread of obligate parthenogenesis in Ldh SF OP individuals. Interestingly, our study shows that CP D. pulicaria carry many of the diagnostic microsatellite alleles associated with obligate parthenogenesis. We argue that the assemblage of mutations that suppress meiosis and underlie obligate parthenogenesis in D. pulex originated due to a unique historical hybridization and introgression event between D. pulex and D. pulicaria.  相似文献   

3.
Cyclic parthenogenesis is the ancestral mode of reproduction in the cladoceran crustacean, Daphnia pulex, but some populations have made the transition to obligate parthenogenesis and this is the only mode of reproduction known to occur in arctic populations. Melanism and polyploidy are also common in arctic populations of this species. Prior allozyme studies of arctic D. pulex revealed substantial levels of clonal diversity on a regional scale. Clonal groupings based on cluster analysis of allozyme genotypes do not conform to groupings based on the presence/absence of melanin or on ploidy level. In order to further elucidate genetic relationships among arctic D. pulex clones, mitochondrial DNA (mtDNA) variation was examined in 31 populations from two Canadian high-arctic sites. The data were also compared to a previous study of mtDNA variation in populations from a Canadian low-arctic site. Cladistic analysis of restriction site variation of the entire mitochondrial genome and nucleotide sequence variation of the mitochondrial control region was used to construct genetic relationships among mitochondrial genotypes. Three distinct mitochondrial lineages were detected. One lineage was associated with diploid, nonmelanic clones and is the same as the lineage that is found in temperate populations of D. pulex. The other two lineages (A & B) were associated with polyploid, melanic clones. Sequence divergence between the A and B lineages was 2.4%. Sequence divergence between D. pulex and either of these two lineages exceeded 3%. It is suggested that the melanic, polyploid clones are hybrids between males of D. pulex (and/or a closely related congener, D. pulicaria) and females of either of two ancestral melanic species that have mitochondrial lineages A and B. Geographic patterns of mitochondrial diversity in ‘melanic’ lineage B support the hypothesis of an high-arctic refuge for the ancestral species during the last glacial period.  相似文献   

4.

Background

Multiple transitions to obligate parthenogenesis have occurred in the Daphnia pulex complex in North America. These newly formed asexual lineages are differentially distributed being found predominantly at high latitudes. This conforms to the rule of geographical parthenogenesis postulating prevalence of asexuals at high latitudes and altitudes. While the reproductive mode of high-latitude populations is relatively well studied, little is known about the reproduction mode in high altitudes. This study aimed to assess the reproductive mode of Daphnia pulicaria, a species of the D. pulex complex, from high altitude lakes in Europe.

Methodology/Principal Findings

Variation at eight microsatellite loci revealed that D. pulicaria from the High Tatra Mountains (HTM) had low genotype richness and showed excess of heterozygotes and significant deviations from Hardy-Weinberg expectations, and was thus congruent with reproduction by obligate parthenogenesis. By contrast, populations from the Pyrenees (Pyr) were generally in Hardy-Weinberg equilibrium and had higher genotypic richness, suggesting that they are cyclic parthenogens. Four lakes from lowland areas (LLaP) had populations with an uncertain or mixed breeding mode. All D. pulicaria had mtDNA ND5 haplotypes of the European D. pulicaria lineage. Pyr were distinct from LLaP and HTM at the ND5 gene. By contrast, HTM shared two haplotypes with LLaP and one with Pyr. Principal Coordinate Analysis of the microsatellite data revealed clear genetic differentiation into three groups. HTM isolates were intermediate to Pyr and LLaP, congruent with a hybrid origin.

Conclusion/Significance

Inferred transitions to obligate parthenogenesis have occurred only in HTM, most likely as a result of hybridizations. In contrast to North American populations, these transitions do not appear to involve meiosis suppressor genes and have not been accompanied by polyploidy. The absence of obligate parthenogenesis in Pyr, an environment highly similar to the HTM, may be due to the lack of opportunities for hybridization.  相似文献   

5.
6.
1. The growth rate hypothesis predicts positive relationships among growth rate (μ), body RNA (%RNA of dry mass) and body P (%P of dry mass) contents. 2. We tested this within‐ and across‐species by growing five species/clones of Daphnia (Daphnia magna, Daphnia pulex, Daphnia galeata and two isolates of Daphnia pulicaria) with different combinations of food quantity and stoichiometric food quality. 3. Within each species, positive correlations among μ, %RNA and %P were seen and across species there was a strong association between%RNA and %P, consistent with the growth rate hypothesis. However, coupling of growth to %RNA and to %P differed for different species. In particular, the %RNA–μ and %P–μ relationships had similar slopes but considerably different y‐intercepts (i.e.%P or %RNA at zero growth), with D. pulicaria and D. galeata having higher intercepts than D. magna and especially D. pulex. As a result of these displacements, the relative rankings of the species on the basis of %P and %RNA did not correspond to their rankings based on μ. 4. These findings suggest that within a narrow clade (e.g. the daphnids), interspecific differences in body P content may reflect not growth rate‐related RNA allocation but instead the amount of RNA required for support of maintenance processes.  相似文献   

7.
Daphnia magna and Daphnia pulex are two important model species in ecotoxicology. In daphniids, studies of the effects of contaminants have mostly focused on female life history traits, yet it would also be important to examine male reproductive traits, particularly in relation to endocrine disruptors. In this study, we developed a protocol that uses flow cytometry to measure sperm number in individual males of different species of Daphnia. We tested our protocol on 114 males from several clones of three common species of Daphnia. Sperm count varied widely among individuals and reached high numbers (up to 1.45 × 105). Positive relationships between male length and sperm number were observed in D. pulex and Daphnia pulicaria, but not in D. magna. Important inter‐clonal differences in sperm production were observed in all species, with some clones producing very little sperm. Duplicated sperm samples showed on average only 6% difference in sperm counts. Sperm counts were stable at least over a 2‐hr period and up to 5 hr for most samples. This sperm isolation protocol and flow cytometric enumeration approach will be of major interest to ecotoxicologists.  相似文献   

8.
Lactate dehydrogenase (LDH) has been shown to play an important role in adaptation of several aquatic species to different habitats. The genomes of Daphnia pulex, a pond species, and Daphnia pulicaria, a lake inhabitant, encode two L-LDH enzymes, LDHA and LDHB. We estimated relative levels of Ldh gene expression in these two closely related species and their hybrids in four environmental settings, each characterized by one of two temperatures (10°C or 20°C), and one of two concentrations of dissolved oxygen (DO; 6.5–7 mg/l or 2–3 mg/l). We found that levels of LdhA expression were 4 to 48 times higher than LdhB expression (p<0.005) in all three groups (the two parental species and hybrids). Moreover, levels of LdhB expression differed significantly (p<0.05) between D. pulex and D. pulicaria, but neither species differed from the hybrid. Consistently higher expression of LdhA relative to LdhB in both species and the hybrid suggests that the two isozymes could be performing different functions. No significant differences in levels of gene expression were observed among the four combinations of temperature and dissolved oxygen (p>0.1). Given that Daphnia dwell in environments characterized by fluctuating conditions with long periods of low dissolved oxygen concentration, we suggest that these species could employ regulated metabolic depression to survive in such environments.  相似文献   

9.
Daphnia pulex is quickly becoming an attractive model species in the field of ecological genomics due to the recent release of its complete genome sequence, a wide variety of new genomic resources, and a rich history of ecological data. Sequences of the mitochondrial NADH dehydrogenase subunit 5 and cytochrome c oxidase subunit 1 genes were used to assess the global phylogeography of this species, and to further elucidate its phylogenetic relationship to other members of the Daphnia pulex species complex. Using both newly acquired and previously published data, we analyzed 398 individuals from collections spanning five continents. Eleven strongly supported lineages were found within the D. pulex complex, and one lineage in particular, panarctic D. pulex, has very little phylogeographical structure and a near worldwide distribution. Mismatch distribution, haplotype network, and population genetic analyses are compatible with a North American origin for this lineage and subsequent spatial expansion in the Late Pleistocene. In addition, our analyses suggest that dispersal between North and South America of this and other species in the D. pulex complex has occurred multiple times, and is predominantly from north to south. Our results provide additional support for the evolutionary relationships of the eleven main mitochondrial lineages of the D. pulex complex. We found that the well-studied panarctic D. pulex is present on every continent except Australia and Antarctica. Despite being geographically very widespread, there is a lack of strong regionalism in the mitochondrial genomes of panarctic D. pulex – a pattern that differs from that of most studied cladocerans. Moreover, our analyses suggest recent expansion of the panarctic D. pulex lineage, with some continents sharing haplotypes. The hypothesis that hybrid asexuality has contributed to the recent and unusual geographic success of the panarctic D. pulex lineage warrants further study.  相似文献   

10.
Cyanobacteria have become an important environmental concern due to their ability to produce a wide range of natural toxins. At present, very few studies describe concentration response curves for cyanobacteria other than Microcystis. However, field evidence highlights that both cyanobacterial concentration as well as cyanobacterial species composition vary considerably with season and year. Therefore, the aim of this study was to investigate the effects of different cyanobacteria at various concentrations of these cyanobacteria in the diet on the reproduction of Daphnia pulex and Daphnia magna. Those two species were chosen to assess whether the cyanobacteria-daphnid dynamics could be generalized for the Daphnia genus. Results demonstrated that both slope and EC50 of the concentration response curves depend upon the Daphnia species, the cyanobacteria species and the potential interaction between the two. This has two major consequences. First, the differences in sensitivity to cyanobacteria between D. magna and D. pulex depend upon concentration of the specific cyanobacteria. Second, we noted different mechanisms of toxicity for the two zooplankton species, a more general mechanism of toxicity for D. pulex and a more specific one for D. magna. Our data therefore suggest that results of studies investigating effects of cyanobacteria at different concentrations cannot be generalized across species. Furthermore, mechanisms of toxicity are not only cyanobacteria specific, but also dependent on the exposed species, even for rather closely related species such as in the Daphnia genus. Whenever possible, we therefore propose to combine a multi-species approach together with a full concentration response analysis to reach more general conclusions concerning the effects of cyanobacteria on zooplankton.  相似文献   

11.
RFLP analysis of the ND4-ND5 genes of the mtDNA genome in Daphnia middendorffiana and three closely allied species was used to investigate its origin and age. Populations of D. middendorffiana from arctic Canada were found to possess three distinct mtDNA lineages, only one of which appears unique to this species. The other two mtDNA lineages are either closely allied or identical to haplotypes in D. pulicaria, suggesting that it is the maternal parent of many clones of D. middendorffiana. Within D. pulicaria, mtDNA lineages have largely disjunct distributions, suggesting that populations of this species persisted in three glacial refugia (arctic, western, eastern) during the Pleistocene. Hybridizations between these refugial stocks and other species such as D. melanica and D. pulex likely generated many of the polyploid lineages of D. middendorffiana following the Wisconsinan glaciation. The presence of one unique mtDNA lineage in D. middendorffiana suggests that at least some of its clones are more ancient, but further studies are needed to rule out the possibility of their recent derivation from an as yet undetected sexual species. As a general result, this study suggests that polyploid cladocerans are unlikely to predate the Pleistocene.  相似文献   

12.
Characteristics of six cladocerans in relation to ecotoxicity testing   总被引:2,自引:0,他引:2  
Investigation was made to compare some biological characteristics relevant to ecotoxicity testing among six cladoceran species, including Daphnia magna, Daphnia carinata, Daphnia pulex, Ceriodaphnia quadrangular, Bosmina longirostris, and Simocephalus vetulus. The results show that D. carinata had advantages over other cladoceran species for being used as a test organism, particularly for ecotoxicological assessment of aquatic environments in tropical and subtropical areas. D. carinata had similar body size and total number of offspring per female to D. magna. However, D. carinata was more sensitive to the reference toxicant and had much shorter reproduction cycle than D. magna. D. carinata had similarity to D. pulex, C. quadrangular, S. vetulus and B. longirostris in terms of sensitivity to the reference toxicant and length of reproduction cycle. However, D. carinata was much larger in size and produced much more offspring per female than any of D. pulex, C. quadrangular, S. vetulus and B. longirostris. Among the investigated cladocerans, only the neonates (2- and 4-day-old) of D. carinata exhibited phototaxis that was sufficiently remarkable. The low among-generation variation in phototaxis index (Ip) of D. carinata and the close relationship between Ip and the concentration of the ISO standard toxicant (K2Cr2O7) appears to suggest that Ip can be used as an excellent test endpoint for ecotoxicity testing.  相似文献   

13.
The genetic structure of nine Peromyscus maniculatus nebrascensis demes from southeastern Wyoming was determined by analyzing allozymes encoded by 23 genetic loci with polyacrylamide gel electrophoresis. Genetic variability is extremely high for two genetic parameters; the proportion of loci heterozygous per individual averaged 0.16, and the proportion of loci polymorphic per deme averaged 0.41. Previous estimates of genetic heterozygosity for species within the genus Peromyscus have a mean of 0.06. The results of the present study suggest that genetic heterozygosity is considerably higher within P. maniculatus demes than within demes of other species in the genus. Geographic range is correlated with heterozygosity among Peromyscus species, as is adaptive divergence into broad-niched species. These correlates suggest that high heterozygosity may reflect an adaptation to a variable environment.  相似文献   

14.
The maintenance of genetic and species diversity in an assemblage of genotypes (clones) in the Daphnia pulex species complex (Cladocera: Anomopoda) in response to variation in the carbon:phosphorus ratio (quantity and quality) of the green alga, Scenedesmus acutus, was examined in a 90-day microcosm competition experiment. Results indicated that mixed assemblages of seven distinct genotypes (representing clonal lineages of D. pulex, D. pulicaria and interspecific hybrids) showed rapid loss of genetic diversity in all treatments (2 × 2 factorial design, high vs. low quantity, and high vs. low quality). However, the erosion of diversity (measured as the effective number of clones) was slowest under the poorest food conditions (i.e., low quantity, low quality) and by the conclusion of the experiment (90 days) had resulted in the (low, low) treatment having significantly greater genetic diversity than the other three treatments. In addition, significant genotype (clone) × (food) environment interactions were observed, with a different predominant species/clone found under low food quality versus high food quality (no significant differences were detected for the two food quantities). A clone of D. pulex displaced the other clones under low food quality conditions, while a clone of D. pulicaria displaced the other clones in the high food quality treatments. Subsequent life-history experiments were not sufficient to predict the outcome of competitive interactions among members of this clonal assemblage. Our results suggest that genetic diversity among herbivore species such as Daphnia may be impacted not only by differences in food quantity but also by those in food quality and could be important in the overall maintenance of genetic diversity in natural populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
1. Laboratory experiments were used to study the feeding, growth and reproduction of five daphnids in mixtures of a toxic cyanobacterium, Microcystis aeruginosa, and a green alga, Scenedesmus acutus. The mixtures included 0%, 20%, 50%, 80% and 100% Microcystis with a total food concentration of 0.5 mg C L??1 in each treatment. The feeding rate was measured after 1 and 24 h of acclimatization to the mixtures. 2. Toxic Microcystis inhibited feeding in all the species, but they exhibited an unexpected diversity and complexity in the pattern of feeding inhibition. Daphnia magna exhibited the strongest inhibition of feeding after 1 h of exposure to toxic food, but had substantially recovered after 24 h in the same mixtures. This pattern of inhibition and recovery may balance the benefits of reduced ingestion of toxin with the disadvantage of a reduced energy intake. 3. All five daphnids grew quickly in the Scenedesmus control, whereas growth and reproduction declined with an increasing proportion of the toxic alga in the diet. Daphnia pulicaria showed the least inhibition of growth and reproduction, D. pulex showed the strongest inhibition and the three remaining species exhibited intermediate sensitivity. 4. Estimates of gross growth efficiency (GGE; growth/ingestion) provided a means for discriminating between the effects of feeding inhibition and direct toxicity on zooplankton growth. Daphnia pulex exhibited a sharp decline in GGE, suggesting that growth inhibition was a result of both feeding inhibition and direct toxicity. In contrast, D. magna exhibited a nearly constant GGE, indicating that feeding inhibition accounted for its decline in growth. However, two Daphnia species (i.e. D. pulicaria and D. galeata) exhibited improbable increases in GGE with toxic cyanobacteria, suggesting that their feeding rates were underestimated. Growth assays with sensitive and resistant zooplankton species are proposed for testing the potential impacts toxic cyanobacteria in lakes.  相似文献   

16.
17.
The CeO2 NPs are increasingly used in industry but the environmental release of these NPs and their subsequent behavior and biological effects are currently unclear. This study evaluates for the first time the effects of CeO2 NPs on the survival and the swimming performance of two cladoceran species, Daphnia similis and Daphnia pulex after 1, 10 and 100 mg.L−1 CeO2 exposures for 48 h. Acute toxicity bioassays were performed to determine EC50 of exposed daphnids. Video-recorded swimming behavior of both daphnids was used to measure swimming speeds after various exposures to aggregated CeO2 NPs. The acute ecotoxicity showed that D. similis is 350 times more sensitive to CeO2 NPs than D. pulex, showing 48-h EC50 of 0.26 mg.L−1 and 91.79 mg.L−1, respectively. Both species interacted with CeO2 NPs (adsorption), but much more strongly in the case of D. similis. Swimming velocities (SV) were differently and significantly affected by CeO2 NPs for both species. A 48-h exposure to 1 mg.L−1 induced a decrease of 30% and 40% of the SV in D. pulex and D. similis, respectively. However at higher concentrations, the SV of D. similis was more impacted (60% off for 10 mg.L−1 and 100 mg.L−1) than the one of D. pulex. These interspecific toxic effects of CeO2 NPs are explained by morphological variations such as the presence of reliefs on the cuticle and a longer distal spine in D. similis acting as traps for the CeO2 aggregates. In addition, D. similis has a mean SV double that of D. pulex and thus initially collides with twice more NPs aggregates. The ecotoxicological consequences on the behavior and physiology of a CeO2 NPs exposure in daphnids are discussed.  相似文献   

18.
The ways in which genetic variation is distributed within and among populations is a key determinant of the evolutionary features of a species. However, most comprehensive studies of these features have been restricted to studies of subdivision in settings known to have been driven by local adaptation, leaving our understanding of the natural dispersion of allelic variation less than ideal. Here, we present a geographic population-genomic analysis of 10 populations of the freshwater microcrustacean Daphnia pulex, an emerging model system in evolutionary genomics. These populations exhibit a pattern of moderate isolation-by-distance, with an average migration rate of 0.6 individuals per generation, and average effective population sizes of ∼650,000 individuals. Most populations contain numerous private alleles, and genomic scans highlight the presence of islands of excessively high population subdivision for more common alleles. A large fraction of such islands of population divergence likely reflect historical neutral changes, including rare stochastic migration and hybridization events. The data do point to local adaptive divergence, although the precise nature of the relevant variation is diffuse and cannot be associated with particular loci, despite the very large sample sizes involved in this study. In contrast, an analysis of between-species divergence highlights positive selection operating on a large set of genes with functions nearly nonoverlapping with those involved in local adaptation, in particular ribosome structure, mitochondrial bioenergetics, light reception and response, detoxification, and gene regulation. These results set the stage for using D. pulex as a model for understanding the relationship between molecular and cellular evolution in the context of natural environments.  相似文献   

19.
Daphnia (water fleas) are small crustaceans that undergo an unusual switch from asexual to sexual reproduction that is dependent on environmental conditions. In this study, a senescence-associated protein (SAP) from the common freshwater species Daphnia pulex was cloned using primers based on homologous sequences and rapid amplification of cDNA ends (RACE). Real-time PCR was employed to quantify the expression of D. pulex SAP (DpSAP) in individual organisms. The role of DpSAP in the reproductive transformation was further investigated in both parthenogenetic and sexual females by using digoxin-labeled SAP RNA probes and RNA whole-mount in situ hybridization. DpSAP was more highly expressed in sexual females, indicating a role in growth and reproduction. Cellular localization studies using RNA whole-mount in situ hybridization showed specific expression in the second tentacle joints. These expression patterns suggest an important role for DpSAP in the reproductive transformation of D. pulex.  相似文献   

20.
Pleistocene glacial cycles undoubtedly altered the evolutionary trajectories of many taxa, yet few studies have examined the impact of such events on genetic differentiation and phylogeography at large geographic scales. Here we present the results of a circumarctic survey of mitochondrial DNA diversity in members of the Daphnia pulex complex. The analysis involved the survey of restriction site polymorphisms in a 2100-bp fragment of the NADH-4 (ND4) and NADH-5 (ND5) genes for 276 populations representing the two major groups (tenebrosa and pulicaria) in this complex across their Holarctic range. A comparison of the distribution patterns for seven clades in this complex revealed very clear phylogeographic structuring. Most notably, pulicaria group lineages were restricted primarily to the Nearctic, with some colonization of formerly glaciated portions of northern Europe. This group was not detected from vast expanses of northern Eurasia, including the Beringian glacial refuge. In contrast, tenebrosa group haplotypes showed considerable intercontinental divergence between Eurasian and North American lineages, but were absent from Greenland and Iceland, as well as the Canadian arctic archipelago. Dispersal in Eurasia was primarily in a westerly direction from Beringia, whereas dispersal in the Nearctic followed proglacial drainage patterns. Long-distance dispersal of certain lineages was observed in both groups, and variation in haplotype richness and nucleotide diversity allowed us to make inferences about the positioning of putative glacial refugia. Overall, the phylogeographic pattern of diversification in this arctic complex is characterized by the apparently unique postglacial histories for each clade, indicating that even closely allied taxa can respond independently to the allopatric effects of glacial cycles. This is in sharp contrast to other phylogeographic studies of species assemblages from more southern (unglaciated) latitudes, which are often characterized by concordant patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号