首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective and step-wise inhibition of bioysnthesis and assembly of three major outer membrane proteins of Escherichia coli (matrix protein, tolG protein (DiRienzo et al., 1978), and lipoprotein) was achieved in the presence of phenethyl alcohol. At a lower concentration (0·3% or higher) PEA4 specifically inhibited the processing and assembly of matrix protein, resulting in the accumulation of promatrix protein. The promatrix protein thus synthesized in the presence of PEA was chased into matrix protein and properly assembled into the outer membrane upon the removal of PEA, demonstrating a direct precursor-product relationship between the two proteins. Promatrix protein was sensitive to trypsin and was also solubilized from the membrane fraction by sodium sarcosinate. However, promatrix protein was also found to be loosely associated with the outer membrane fraction. These data indicate that promatrix protein was translocated across the cytoplasmic membrane and localized external to the cytoplasmic membrane, although it was not yet properly inserted into the outer membrane structure.The inhibition of processing of protolG (DiRienzo et al., 1978) protein was observed at higher levels of PEA (0·4% or higher). However, at all concentrations of PEA tested, the accumulation of prolipoprotein was not detected. On the other hand, when PEA was added at concentrations lower than the above critical concentrations for each protein, the precursor was properly processed but the processed proteins (tolG protein, and lipoprotein) were accumulated in the periplasmic space, since they were released by osmotic shock. tolG protein of the soluble cell fraction was chased into the outer membrane after removal of PEA and regrowth of the cells in culture. The processed lipoprotein of the soluble fraction was trypsin-sensitive in contrast to mature lipoprotein. These results indicate that the precursor protein with the peptide extension is transformed into a new assembly intermediate after the extended peptide is cleaved off. This intermediate may be released into the periplasmic space in the presence of PEA before it can be assembled into the outer membrane. These data indicate that the peptide extension is not essential for the insertion of the outer membrane protein into the outer membrane.When PEA (0·3%) was added to a growing culture, the production of not only matrix protein but also promatrix protein was completely inhibited. However, synthesis of promatrix protein was restored when rifampicin was added before the PEA treatment. These results are discussed in terms of control of gene expression for matrix protein. PEA was found to increase the membrane fluidity.  相似文献   

2.
Braun V  Patzer SI  Hantke K 《Biochimie》2002,84(5-6):365-380
Ton-dependent colicins and microcins are actively taken up into sensitive cells at the expense of energy which is provided by the proton motive force of the cytoplasmic membrane. The Ton system consisting of the proteins TonB, ExbB and ExbD is required for colicin and microcin import. Colicins as well as the outer membrane transport proteins contain proximal to the N-terminus a short sequence, called TonB box, which interacts with TonB and in which point mutants impair uptake. No TonB box is found in microcins. Colicins are composed of functional modules which during evolution have been interchanged resulting in new colicins. The modules define sites of interaction with the outer membrane transport genes, TonB, the immunity proteins, and the activity regions. Six TonB-dependent microcins with different primary structures are processed and exported by highly homologous proteins. Three of these microcins are modified in an unknown way and they have in common specificity for catecholate siderophore receptors.  相似文献   

3.
Colicin D is known to kill target cells by cleaving tRNA(Arg). A colicin D-resistant mutant was selected that was altered in the inner membrane leader peptidase, LepB. The substituted residue (Asn274Lys) is located close to the catalytic site. The mutation abolishes colicin D cleavage but not the processing of exported proteins. LepB is required for colicin D cleavage, releasing a small C-terminal fragment that retains full tRNase activity. The immunity protein was found to prevent colicin D processing and furthermore masks tRNase activity, thus protecting colicin D against LepB-mediated cleavage during export. Catalytic colicins share a consensus sequence at their putative processing site. Mutations affecting normal processing of colicin D abolish cytotoxicity without affecting the in vitro tRNase activity.  相似文献   

4.
Peptidylglycine alpha-amidating monooxygenase (PAM) is a bifunctional enzyme responsible for the alpha-amidation of peptides in secretory granules of neuroendocrine cells. The single gene encoding PAM undergoes tissue-specific alternative splicing and endoproteolytic processing to generate bifunctional membrane proteins with a single transmembrane domain as well as soluble proteins that are mono- or bifunctional. In order to examine the endoproteolytic processing and subcellular localization of the various forms of PAM in cells lacking regulated secretory granules, we established stably transfected hEK-293 cell lines expressing naturally occurring and mutant forms of PAM. As expected, newly synthesized soluble PAM proteins were rapidly secreted into the medium. Integral membrane protein forms of PAM were largely localized in the perinuclear region with punctate staining visible throughout the cell and 2-5% of the enzyme activity detectable on the cell surface. Bifunctional PAM proteins were slowly released into the medium after expression of integral membrane protein forms of PAM. Deletion of 77 amino acids from the COOH-terminus of the integral membrane forms of PAM resulted in a membrane-bound protein which retained both enzymatic activities but accumulated on the cell surface. Rapid internalization of full-length PAM proteins was observed by incubating live cells with antiserum to PAM; deletion of the COOH-terminal domain eliminated the ability of cells to internalize PAM. Thus the cytoplasmic domain of integral membrane PAM contains a routing determinant recognized by cells lacking the regulated secretory pathway.  相似文献   

5.
Escherichia coli strains B and K12 W 1655 F+ are able to bind more lethal units of colicins E2, E3, G, H, Ia, and K+ X per one stable L-form cell (of the protoplast type) than per one rod cell; colicin D is bound in a higher amount on E. coli B rods. This pattern remains unchanged, if the same colicins are attached on chloroform-killed cells of both forms. Rods of both E. coli strains are more sensitive to colicins D, E2, E3, K + X (as--in the strain B--to colicin Ia) than cells of the respective L-forms. In the strain W 1655 F+ both cell forms are equally highly sensitive to colicin Ia. The stable L-forms of both strains are much more sensitive to colicins G and H than the rods. Thus the Gram-negative cell wall decreases the probability of a colicin molecule to get attached to its receptor in the cytoplasmic membrane. On the other hand, in E. coli cells the attachment of most colicin molecules to the wall receptors increases the probability of their biological effect. There is no such effect of the wall-attachment on the action of colicins G or H. The strain B is tolerant to colicin E2, while being resistant to E3; thus the cytoplasmic membrane receptor sites for them are not identical.  相似文献   

6.
J M Pages 《Biochimie》1983,65(10):531-541
Bacterial protein synthesis takes place in the cytoplasm, thus periplasmic and outer membrane proteins pass through the cytoplasmic membrane during their dispatch to the cell envelope. The exported proteins are synthesized as precursor that contains an extra amino-terminal sequence of amino-acids. This sequence, termed "signal sequence", is essential for transport of the envelope proteins through the inner membrane and is cleaved during the exportation process. Various hypotheses for the mechanism have been presented, and it is likely that no signal model will be suitable to the export of all cell envelope proteins. This review is focused on the relationship between the cytoplasmic membrane and the precursor form. The physiological state of the membrane - fluidity, membrane potential for instance - is the strategic requirement of exportation process. Precursors can be accumulated in whole cells with various treatments which alter the cytoplasmic membrane. This inhibition of processing is obtained by modification of unsaturated to saturated fatty acids ratio or with phenylethyl alcohol which perturbs the membrane fluidity, with uncoupler agents such as carbonyl cyanide m-chlorophenyl hydrazone which dissipate the proton motive force, or with hybrid proteins which get jamming in the membrane. However, little is known about the early steps of translocation process across the cytoplasmic membrane ; for instance, it is not clear yet whether energy is required for either or both of the first interaction membrane-precursor and the crossing through the membrane. Several studies have recently shown the presence of exportation sites and of proteins which might play a prominent role in the export process, but the mechanism of discrimination between outer membrane proteins and periplasmic proteins is unknown. Considerable work has been done by genetic or biochemical methods and we have now the first lights of the expert mechanism.  相似文献   

7.
It has long been suggested that the import of nuclease colicins requires protein processing; however it had never been formally demonstrated. Here we show that two RNase colicins, E3 and D, which appropriate two different translocation machineries to cross the outer membrane (BtuB/Tol and FepA/TonB, respectively), undergo a processing step inside the cell that is essential to their killing action. We have detected the presence of the C-terminal catalytic domains of these colicins in the cytoplasm of target bacteria. The same processed forms were identified in both colicin-sensitive cells and in cells immune to colicin because of the expression of the cognate immunity protein. We demonstrate that the inner membrane protease FtsH is necessary for the processing of colicins D and E3 during their import. We also show that the signal peptidase LepB interacts directly with the central domain of colicin D in vitro and that it is a specific but not a catalytic requirement for in vivo processing of colicin D. The interaction of colicin D with LepB may ensure a stable association with the inner membrane that in turn allows the colicin recognition by FtsH. We have also shown that the outer membrane protease OmpT is responsible for alternative and distinct endoproteolytic cleavages of colicins D and E3 in vitro, presumably reflecting its known role in the bacterial defense against antimicrobial peptides. Even though the OmpT-catalyzed in vitro cleavage also liberates the catalytic domain from colicins D and E3, it is not involved in the processing of nuclease colicins during their import into the cytoplasm.  相似文献   

8.
The hydrophobic C terminus of pore-forming colicins associates with and inserts into the cytoplasmic membrane and is the target of the respective immunity protein. The hydrophobic region of colicin U of Shigella boydii was mutated to identify determinants responsible for recognition of colicin U by the colicin U immunity protein. Deletion of the tip of the hydrophobic hairpin of colicin U resulted in a fully active colicin that was no longer inactivated by the colicin U immunity protein. Replacement of eight amino acids at the tip of the colicin U hairpin by the corresponding amino acids of the related colicin B resulted in colicin U(575–582ColB), which was inactivated by the colicin U immunity protein to 10% of the level of inactivation of the wild-type colicin U. The colicin B immunity protein inactivated colicin U(575–582ColB) to the same degree. These results indicate that the tip of the hydrophobic hairpin of colicin U and of colicin B mainly determines the interaction with the corresponding immunity proteins and is not required for colicin activity. Comparison of these results with published data suggests that interhelical loops and not membrane helices of pore-forming colicins mainly interact with the cognate immunity proteins and that the loops are located in different regions of the A-type and E1-type colicins. The colicin U immunity protein forms four transmembrane segments in the cytoplasmic membrane, and the N and C termini face the cytoplasm.  相似文献   

9.
Several E. coli endogenous, cytoplasmic proteins that are known clients of the chaperonin GroEL were overexpressed to examine the fate of accumulated unfolded polypeptides. Substantial fractions of about half of the proteins formed insoluble aggregates, consistent with the hypothesis that these proteins were produced at rates or in amounts that exceeded the protein-folding capacity of GroEL. In addition, large fractions of three overexpressed GroEL client proteins were localized in an extra-cytoplasmic, osmotically-sensitive compartment, suggesting they had initially accumulated in the cytoplasm as soluble unfolded polypeptides and thus were able to access a protein export pathway. Consistent with this model, an intrinsically unfoldable, hydrophilic, non-secretory polypeptide was quantitatively exported from the E. coli cytoplasm into an osmotically-sensitive compartment. Our results support the conclusion that a soluble, unfolded conformation alone may be sufficient to direct non-secretory polypeptides into a protein export pathway for signal peptide-independent translocation across the inner membrane, and that export rather than degradation by cytoplasmic proteases is the preferred fate for newly-synthesized, soluble, unfolded polypeptides that accumulate in the cytoplasm. The stable folded conformation of exported GroEL client proteins further suggests that the requirement for GroEL may be conditional on protein folding in the molecularly-crowded environment of the cytoplasm.  相似文献   

10.
Export of porin to the outer membrane of the phototrophic purple bacterium Rhodobacter capsulatus was studied with the use of the uncoupler of the electron transport chain, carbonylcyanide-m-chlorophenylhydrazone (CCCP). The agent reversibly blocked the transport of porin across the cytoplasmic membrane. By means of radioactive labeling and immunoprecipitation, porin was found to occur in two forms: (i) the exported form that was extractable from the outer membrane without disrupting the cells, and (ii) a pre-form with a slightly higher apparent molecular mass which accumulated in the cells during the block of the export process. Proteolysis studies revealed that the preform was highly sensitive to added proteases, whereas the exported form was resistant.Abbreviations CCCP carbonylcyanide-m-chlorophenylhydrazone - DMSO dimethylsulfoxide - EDTA ethylenediamine tetraacetic acid - OMP outer membrane porin; pre-OMP, form of outer membrane porin before export - PAGE polyacrylamide gel electrophoresis - PMSF phenylmethylsulfonyl fluoride - SDS sodium dodecyl sulfate  相似文献   

11.
Colicins are antibiotic proteins that kill sensitive Escherichia coli cells. Their mode of action involves three steps: binding to specific receptors located in the outer membrane, translocation across this membrane, and action on their targets. A specific colicin domain can be assigned to each of these steps. Colicins have been subdivided into two groups (A and B) depending on the proteins required for them to cross the external membrane. Plasmids were constructed which led to an overproduction of the Tol proteins involved in the import of group A colicins. In vitro binding of overexpressed Tol proteins to either Tol-dependent (group A) or TonB-dependent (group B) colicins was analyzed. The Tol dependent colicins A and E1 were able to interact with TolA but the TonB dependent colicin B was not. The C-terminal region of TolA, which is necessary for colicin uptake, was also found to be necessary for colicin A and E1 binding to occur. Furthermore, only the isolated N-terminal domain of colicin A, which is involved in the translocation step, was found to bind to TolA. These results demonstrate the existence of a correlation between the ability of group A colicins to translocate and their in vitro binding to TolA protein, suggesting that these interactions might be part of the colicin import process.  相似文献   

12.
An E. coli strain carrying a fusion of the malE and lacZ genes is induced for the synthesis of a hybrid protein, consisting of the N-terminal part of the maltose-binding protein and the enzymatically active C-terminal part of β-galactosidase, by addition of maltose to cells. The secretion of the protein is initiated by the signal peptide attached to the N terminus of the maltose-binding protein sequence, but is not completed, presumably because the β-galactosidase moiety of the hybrid protein interferes with the passage of the polypeptide through the cytoplasmic membrane. Thus the protein becomes stuck to the cytoplasmic membrane. Under such conditions, periplasmic proteins, including maltose-binding protein (encoded by the malE gene) and alkaline phosphatase, and the major outer-membrane proteins, including OmpF, OmpA and probably lipoprotein, are synthesized as precursor forms with unprocessed signal sequences. This effect is observed within 15 min after high levels of induction are achieved. The simplest explanation for these results and those of pulse-chase experiments is that specific sites in the cytoplasmic membrane become progressively occupied by the hybrid protein, resulting in an inhibition of normal localization and processing of periplasmic and outer-membrane proteins. These results suggest that most of the periplasmic and outer-membrane proteins share a common step in localization before the polypeptide becomes accessible to the processing enzyme. If this interpretation is correct, we can estimate that an E. coli cell has roughly 2 × 104 such sites in the cytoplasmic membrane. A system is described for detecting the precursor of any exported protein.  相似文献   

13.
Lantibiotic and non-lantibiotic bacteriocins are synthesized as precursor peptides containing N-terminal extensions (leader peptides) which are cleaved off during maturation. Most non-lantibiotics and also some lantibiotics have leader peptides of the so- called double-glycine type. These leader peptides share consensus sequences and also a common processing site with two conserved glycine residues In positions -1 and 2. The double-glycine-type leader peptides are unrelated to the N-terminal signal sequences which direct proteins across the cytoplasmic membrane via the sec pathway. Their processing sites are also different from typical signal peptidase cleavage sites, suggesting that a different processing enzyme is involved. Peptide bacteriocins are exported across the cytoplasmic membrane by a dedicated ATP-binding cassette (ABC) transporter. Here we show that the ABC transporter is the maturation protease and that its proteolytic domain resides in the N-terminal part of the protein. This result demonstrates that the ABC transporter has a dual function: (i) removal of the leader peptide from its substrate, and (ii) translocation of its substrate across the cytoplasmic membrane. This represents a novel strategy for secretion of bacterial proteins.  相似文献   

14.
Two colicins that affect energy metabolism in Escherichia coli (colicins K and E1) are shown to cause loss of specific membrane proteins from treated cells. Disappearance of these proteins after treatment with colicin K occurs at low multiplicities and is independent of ATPase (EC 3.6.1.4) and phospholipase A (EC 3.1.1.4) activities. The uncouplers carbonyl cyanide m-chlorophenylhydrazone and dinitrophenol do not alter the pattern of membrane proteins.  相似文献   

15.
Plasmodium falciparum malaria parasites export several hundred proteins to the cytoplasm of infected red blood cells (RBCs) to modify the cell environment suitable for their growth. A Plasmodium translocon of exported proteins (PTEX) is necessary for both soluble and integral membrane proteins to cross the parasitophorous vacuole (PV) membrane surrounding the parasite inside the RBC. However, the molecular composition of the translocation complex for integral membrane proteins is not fully characterized, especially at the parasite plasma membrane. To examine the translocation complex, here we used mini-SURFIN4.1, consisting of a short N-terminal region, a transmembrane region, and a cytoplasmic region of an exported integral membrane protein SURFIN4.1. We found that mini-SURFIN4.1 forms a translocation intermediate complex with core PTEX components, EXP2, HSP101, and PTEX150. We also found that several proteins are exposed to the PV space, including Pf113, an uncharacterized PTEX-associated protein. We determined that Pf113 localizes in dense granules at the merozoite stage and on the parasite periphery after RBC invasion. Using an inducible translocon-clogged mini-SURFIN4.1, we found that a stable translocation intermediate complex forms at the parasite plasma membrane and contains EXP2 and a processed form of Pf113. These results suggest a potential role of Pf113 for the translocation step of mini-SURFIN4.1, providing further insights into the translocation mechanisms for parasite integral membrane proteins.  相似文献   

16.
The adenosine 5'-triphosphate (ATP)-linked transhydrogenase reaction, present in the particulate fractions of Escherichia coli, was previously shown to be inhibited in these fractions when the bacteria were treated with colicins K or El. The purpose of this study was to characterized the ATP-linked transhydrogenase reaction and the colicin-caused inhibition of the reaction in purified cytoplasmic membranes. Particulate fractions from bacteria treated or untreated with colicins were separated on sucrose gradients into cell wall membrane and cytoplasmic membrane fractions. The ATP-linked transhydrogenase reaction was found to be exclusively associated with the cytoplasmic membrane fractions. The reaction was inhibited by carbonylcyanide m-chlorophenlhdrazone, dinitrophenol, N,N'-dicyclohexylcarbodiimide, and trypsin. Although the cytoplasmic membrane fractions were purified from the majoriy of the cell wall membrane and its bound colicins, they showed the inhibitory effects of colicins K and El on the ATP-linked transhydrogenase reaction. The inhibition of ATP-linked transhydrogenase reaction induced by the colicin could not be reversed by subjection the isolated membranes to a variety of physical and chemical treatments. Cytoplasmic membranes depleted of energy-transducing adenosine triphosphatase ATPase) complex (coupling factor) lost the ATP-linked transhydrogenase activity. The ATPase complexes isolated from membranes of bacteria treated or untreated with colicins El or K reconstituted high levels of ATP-linded transhydrogenase activity to depleted membranes of untreated bacteria. The same ATPase complexes reconstituted low levels of activity to depleted membranes of the treated bacteria.  相似文献   

17.
Five classes of MalE-LacZ hybrid proteins have previously been characterized. These proteins differ in the amount of the maltose-binding protein (MBP) that is attached to beta-galactosidase. Although none of these proteins is secreted into the periplasm, the four larger classes of hybrid proteins, those that include an intact MBP signal peptide, are inserted into the cytoplasmic membrane, suggesting that the secretion process has at least been initiated. In this study, we demonstrated that some portion of the four larger hybrid proteins can be translocated across the cytoplasmic membrane, thus permitting processing of the signal peptide. We have found that hybrid proteins that include only a small portion of the mature MBP are inefficiently recognized as exported proteins, and translocation and processing of these appear to be relatively slow, posttranslational events. In marked contrast, hybrid proteins that include a substantial portion of the mature MBP are efficiently recognized, and translocation and processing of these occur very rapidly, possibly cotranslationally. Our results complement other studies and very strongly suggest a role for the mature MBP in the export process.  相似文献   

18.
A major group of colicins comprises molecules that possess nuclease activity and kill sensitive cells by cleaving RNA or DNA. Recent data open the possibility that the tRNase colicin D, the rRNase colicin E3 and the DNase colicin E7 undergo proteolytic processing, such that only the C-terminal domain of the molecule, carrying the nuclease activity, enters the cytoplasm. The proteases responsible for the proteolytic processing remain unidentified. In the case of colicin D, the characterization of a colicin D-resistant mutant shows that the inner membrane protease LepB is involved in colicin D toxicity, but is not solely responsible for the cleavage of colicin D. The lepB mutant resistant to colicin D remains sensitive to other colicins tested (B, E1, E3 and E2), and the mutant protease retains activity towards its normal substrates. The cleavage of colicin D observed in vitro releases a C-terminal fragment retaining tRNase activity, and occurs in a region of the amino acid sequence that is conserved in other nuclease colicins, suggesting that they may also require a processing step for their cytotoxicity. The immunity proteins of both colicins D and E3 appear to have a dual role, protecting the colicin molecule against proteolytic cleavage and inhibiting the nuclease activity of the colicin. The possibility that processing is an essential step common to cell killing by all nuclease colicins, and that the immunity protein must be removed from the colicin prior to processing, is discussed.  相似文献   

19.
Effects of phenethyl alcohol on Bacillus and Streptococcus.   总被引:3,自引:3,他引:0       下载免费PDF全文
The activity of phenethyl alcohol (PEA) on Bacillus cereus, B. megaterium, and Streptococcus faecalis was studied by electron microscopy of thin sections and by the assay of intracellular K+ leakage. S. faecalis was unaffected by PEA at concentrations up to 0.5%, B. cereus was severely damaged by 0.5% PEA, and B. megaterium behaved intermediately. Important membrane ultrastructural alterations were observed in B. cereus cells treated with 0.5% PEA, namely the change in the geometry of the membrane profile from asymmetric to symmetric, the occurrence of prominent, complex mesosome-like structures, and membrane fracturing and solubilization. Protoplasts from B. megaterium were found to be quickly lysed by 0.5% PEA due to the disruption of the cytoplasmic membrane. The electron microscopic observations, together with the results of the study of the K+ efflux from B. cereus and B. megaterium, indicate that PEA primarily and directly damages the cytoplasmic membrane of sensitive bacteria. The breakdown of the permeability barrier probably is responsible for the observed bactericidal action of 0.5% PEA on B. cereus.  相似文献   

20.
A whole cell lysate of Legionella pneumophila was fractionated into five membrane fractions by sucrose gradient centrifugation. Membranes were characterized by enzymatic, chemical, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. Two forms of cytoplasmic membrane (CM-1, CM-2), a band of intermediate density (IM), and two forms of outer membrane (OM-1, OM-2) were detected. The CM-1 fraction was the purest form of cytoplasmic membrane, and fraction CM-2 was primarily cytoplasmic membrane associated with small amounts of peptidoglycan. The IM, CM-1, and CM-2 fractions were enriched in peptidoglycan, and the amount of carbohydrate and 2-keto-3-deoxyoctonic acid was not appreciably greater in outer membrane relative to cytoplasmic membrane. Phosphatidylethanolamine and phosphatidylcholine were found to be the major phospholipids in the membrane fractions. The major outer membrane proteins had molecular sizes of 29,000 and 33,000 daltons and were both modified by heating. The 29,000-dalton protein was tightly associated with the peptidoglycan and was equally distributed in the IM, OM-1, and OM-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号