首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding to DNA of Pt-bis-Nt and its modified analogue (Pt*-bis-Nt), which differs from Pt-bis-Nt by the fact that the connecting chain between two netropsin fragments contains two additional glycine residues, has been studied. Elongating the chain in the bis-netropsin molecule increases the cytotoxicity and leads to a complete disappearance of the antiherpetic activity of bis-netropsin. A study of the binding of two bis-netropsins with the oligonucleotide duplex containing an AT cluster, which is present at the replication initiation site of herpes virus (OriS), revealed significant structural differences between complexes of bis-netropsins with this DNA oligomer. It was shown by CD spectroscopy that the binding of Pt-bis-Nt in the elongated conformation and in the form of a hair-pin with the parallel orientation of two bis-netropsin fragments makes a greater contribution than it is the case in the complex formation with Pt*-bis-Nt. At high binding rates, Pt*-bis-Nt binds to the AT cluster in OriS predominantly in the form of associates based on the antiparallel double-stranded pyrrolcarboxyamide motif. The interaction of Pt-bis-Nt and Pt*-bis-Nt with the single-stranded oligonucleotide (64 nt), which corresponds to the upper strand at the replication initiation site of herpes virus (OriS*), was also studied. Substantial differences in the binding of bis-netropsins with OriS* and thermostability of the resulting complexes were found by CD spectroscopy and by studying the melting of complexes of bis-netropsins with OriS*.  相似文献   

2.
The protein binding to the origin of replication of the herpes simplex virus type 1 is DNA helicase encoded by the UL9 gene of the herpes virus. The protein specifically binds to two binding sites in the viral DNA replication origins OriS or OriL. In order to determine the role of the UL9 protein in the initiation of replication and find efficient inhibitors of the UL9 activity, we have synthesized a recombinant UL9 protein expressed in E. coli cells. It was found that the recombinant UL9 protein binds to Boxes I and II in OriS and possesses DNA helicase and ATPase activities. In the complex with a fluorescent analog of ATP, two molecules of the ATP analog bind to one protein dimer molecule. It was also found that the UL9 protein in the dimer form can bind simultaneously to two DNA fragments, each containing specific binding sites for the protein. The interaction of the recombinant UL9 protein with the 63-mer double- and single-stranded oligonucleotides OriS and OriS*, which correspond to the origin of replication of herpes simplex virus, has been investigated. From the titrations of OriS and OriS* with ethidium bromide in the presence and absence of the UL9 protein, the equilibrium affinity constants of the protein binding to OriS and OriS* have been determined. A DNase I footprinting study showed that bis-netropsins exhibit preference for binding to the AT cluster in the origin of replication OriS and inhibit the fluctuation opening of AT base pairs in the AT cluster. The drugs also prevent formation of an intermediate conformation of OriS* that involves a disordered tail at the 3′ end and stable Box I-Box III hairpin to which the UL9 helicase selectively binds. The stabilization by bis-netropsins of the AT-rich hairpin at its 3′ end can inhibit the helicase activity. It was concluded that the antiviral activity of bis-netropsins may be associated with the inhibitory effects of bis-netropsins on these two stages of the reaction catalyzed by helicase UL9.  相似文献   

3.
Data obtained show that antiviral activities of bis-linked netropsin derivatives are targeted by specific complexes formed by helicase UL9 of herpes simplex virus type 1 with viral DNA replication origins, represented by two OriS sites and one OriL site. According to the results of footprinting studies, bis-netropsins get bound selectively to an A + T cluster which separates interaction sites I and II for helicase UL9 in OriS. Upon binding to DNA, bis-netropsins stabilize a structure of the A + T cluster and inhibit thermal fluctuation-induced opening of AT base pairs which is needed for local unwinding of DNA by helicase UL9. Kinetics of ATP-dependent DNA unwinding in the presence and absence of Pt-bis-netropsin are studied by measuring the efficiency of Forster resonance energy transfer (FRET) between the fluorescent probes attached covalently to 3′- and 5′-ends of the oligonucleotides in the minimal OriS duplex. Pt-bis-netropsin and related molecules inhibit unwinding of OriS duplex by helicase UL9. Pt-bis-netropsin is also able to reduce the rate of unwinding of the AT-rich hairpin formed by the upper strand in the minimal OriS duplex. The antiviral activities and toxicity of bis-linked netropsin derivatives are studied in cell cultured experiments and experiments with animals infected by herpes virus.  相似文献   

4.
Data obtained show that antiviral activities of bis-linked netropsin derivatives are targeted by specific complexes formed by helicase UL9 of herpes simplex virus type 1 with viral DNA replication origins, represented by two OriS sites and one OriL site. According to the results of footprinting studies bis-netropsins get bound selectively to an A+T-cluster which separates interaction sites I and II for helicase UL9 in OriS. Upon binding to DNA bis-netropsins stabilize a structure of the A+T-cluster and inhibit thermal fluctuation-induced opening of AT- base pairs which is needed for local unwinding of DNA by helicase UL9. Kinetics of ATP-dependent DNA unwinding in the presence and absence of Pt-bis-netropsin are studied by measuring the efficiency of Forster resonance energy transfer (FRET) between the fluorescent probes attached covalently to 3?- and 5?-ends of the oligonucleotides in the minimal OriS duplex. Pt-bis-netropsin and related molecules inhibit unwinding of OriS duplex by helicase UL9. Pt-bis-netropsin is also able to reduce the rate of unwinding of the AT- rich hairpin formed by the upper strand in the minimal OriS duplex. The antiviral activities and toxicity of bis-linked netropsin derivatives are studied in cell cultured experiments and experiments with animals infected by herpes virus.  相似文献   

5.
Abstract

Pt-bis-netropsin is a synthetic sequence-specific DNA-binding ligand comprizing two netropsin-like fragments which are linked in a tail-to-tail manner via a cis-diammineplat-inum (II) residue. The CD studies and thermodynamic characterization of the DNA-binding properties exhibited by this compound reveal that it forms two types of complexes with poly[d(AT)]?poly[d(AT)] and DNA oligomers containing nucleotide sequences 5′-CC (TA)nCC-3′, with n = 4, 5 and 6. The first type corresponds to the binding of Pt-bis-netropsin in the extended conformation and is characterized by the saturating ratio of one bound Pt-bis-netropsin molecule per 9 AT-base pairs. The second type of the complex corresponds to the binding of Pt-bis-netropsin to DNA in the folded hairpin form. The binding approaches saturation level when one Pt-bis-netropsin molecule is bound per four or five AT-base pairs. The hairpin form of Pt-bis-netropsin complex is built on the basis of parallel side-by-side peptide motif which is inserted in the minor DNA groove. The CD spectral profiles reflecting the binding of Pt-bis-netropsin in the hairpin form are different from those observed for binding of another bis-netropsin with the sequence Lys-Gly-Py-Py-Gly-Gly-Gly-Py-Py-Dp, where Py is a N-propylpyrrole amino acid residue and Dp is a dimethylaminopropylamino residue. The hairpin form of this bis-netropsin is formed on the basis of antiparallel side- by-side peptide motif. The CD spectra obtained for complexes of this polyamide in the hairpin form with poly[dAT)]?poly[d(AT)] exhibit positive CD band with a peak at 325 nm, whereas the CD spectral profiles for the second complex of Pt-bis-Nt with poly[d(AT)] ?poly[d(AT)] and short DNA oligomers have two intense positive CD bands near 290 nm and 328 nm. This reflects the fact that two bis-netropsins use different structural motifs on binding to DNA in the hairpin form.  相似文献   

6.
In the present communication design, synthesis and DNA binding activities of three bis-netropsins and two netropsin analogs containing two N-propylpyrrolecarboxamide fragments linked covalently to peptides Gly-Gly-(analog I) and Val-Val-Val-Gly-Gly-(analog II) are reported. Each bis-netropsin consists of two netropsin-like fragments attached to peptides -Gly-Cys-Gly-NH2 (compound IIIa), H-Gly-Cys-Gly-Gly-Gly-(compound IV) or Gly-Cys-Sar-NH2 (compound IIIb) which are linked symmetrically via S-S bonds. Physico-chemical studies show that each bis-netropsin carries 6 AT-specific reaction centers and covers approximately 10 base pairs upon binding to poly(dA).poly(dT). This indicates that two netropsin-like fragments of the bis-netropsin molecule are implicated in specific interaction with DNA base pairs. The peptide fragments of bis-netropsins IIIa and IV form small beta-sheets containing two-GC-specific reaction centers. The DNase I cleavage patterns of bis-netropsin-DNA complexes visualized by high resolution gel electrophoresis show that the preferred binding sites for bis-netropsins IIIa and IV are identical and contain two runs of three or more AT pairs separated by two GC pairs. Specificity determinants of netropsin analog II binding in the beta-associated dimeric form are identical to those of bis-netropsin IIIa thereby indicating that there is a similarity in the structure of complexes formed by these ligands with DNA. In the monomeric form analog II exhibits binding specificity identical to that of analog I. Replacement of C-terminal glycine residues by sarcosines in the peptide fragments of bis-netropsin IIIa leads to a decrease in the affinity of ligand for DNA.  相似文献   

7.
The binding of a dimeric distamycin analog (Pt–bis–Dst) to poly[d(A–T)]poly[d(A–T)], poly(dA)poly(dT), and duplex O23 with the sequence 5’-GCCAATATATATATATTATTAGG-3’, which occurs at the origin of replication (OriS) of the herpes simplex virus, was studied via UV and CD spectroscopy. The synthetic polyamide differs from the natural antibiotic in having two distamycin moieties that are linked via a glycine cis-diamino platinum group. The Pt–bis–Dst binding to poly[d(A–T)]poly[d(A–T)] and poly(dA)poly(dT) reached saturation at approximately one ligand molecule per eight bp. As the ligand–base pair ratio further increased, the maximum wavelength band tended to shift toward longer wavelengths in the CD spectra of complexes with poly[d(A–T)]poly[d(A–T)] and a shoulder appeared in the 290–310 nm spectral region that was absent from the CD spectra of complexes with lower ligand coverages. At higher ligand–oligonucleotide molar ratios, Pt–bis–Dst could bind to poly[d(A–T)]poly[d(A–T)] in the form of hairpins or associations that result from interactions between the distamycin moieties of two neighbor Pt–bis–Dst molecules. The structures of the complexes were stabilized by interactions between the pirrolcarboxamide moieties of two Pt–bis–Dst molecules absorbed on adjacent overlapping binding sites. The interactions could also be responsible for the concentration-dependent spectral changes that were observed during the formation of a complex between Pt–bis–Dst and poly[d(A–T)]poly[d(A–T)]. Spectral changes were almost absent in the case of Pt–bis–Dst binding to poly(dA)poly(dT). The binding of Pt–bis–Dst to duplex O23 reached saturation at two ligand molecules per duplex, which contained a cluster of 18 AT pairs. At higher molar-concentration ratios, duplex CD spectra underwent changes similar to those that were observed for Pt–bis–Dst binding to poly[d(A–T)]poly[d(A–T)]. Testing Pt–bis–Dst for antiviral activity identified 1.5 μg/mL as a concentration that halved the cytopathic effect of the herpes simplex virus on Vero E6 cells; the selectivity index of antiviral action was 65; cytotoxicity was relatively low. The Pt–bis–Dst concentration that caused the death of approximately half of the cells was estimated at 100 μg/mL.  相似文献   

8.
The DNA-binding and antiviral activitus of bis-netropsins in which two monomers are attached covalently via three glycin residue were studied. These compounds have the same C-end groups but contain clusters with different numbers of lysine residues at the N-end of the molecule. In the homologous series of these compounds, bis-neropsins containing 15 and 31 branched lysine residues at the N-end of the molecule appear to be the most effective inhibitors of reproduction of the simplex herpes virus of type I in the Vero cell culture, including the virus versions resistant to aciclovir, ganciclovir, and other medicinal preparations. It was shown that the cytotoxicity of all the compounds studied is much lower than that of netropsin. The antiviral activity of the compounds correlates with their ability to selectively interact with the expanded clusters of the AT-pairs of DNA bases in the form of a monomer or a dimer, stabilized by interaction between the C-end halves of two bis-netropsin molecules bound at the neighboring overlapping binding sites on the DNA. The possible sites of their binding are the expanded clusters of AT-pairs at the origin of replication of OriS and OriL of the herpes virus.  相似文献   

9.
Bis-Netropsins with the C-ends of their netropsin fragments tethered via tetra- or pentamethylene linkers and with Gly or L-Lys-Gly residues on their N-ends were synthesized. The footprinting technique was used to study the specificity of bis-netropsin binding to the specially constructed DNA fragments containing various clusters of A.T pairs. It was found that the linker length affects the binding of bis-netropsins, with the tetramethylene linker providing better protection than the pentamethylene linker. It was shown that the newly synthesized bis-netropsins bind tighter to the 5'-A4T(4)-3' sequence, whereas the bis-netropsin with a linker between the netropsin N-ends binds better to 5'-T4A(4)-3' sequences. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2002, vol. 28, no. 6; see also http://www.maik.ru.  相似文献   

10.
Cis-diammine Pt(II)- bridged bis-netropsin and oligomethylene-bridged bis-netropsin in which two monomers are linked in a tail-to-tail manner bind to the DNA oligomer with the sequence 5'-CCTATATCC-3' in a parallel-stranded hairpin form with a stoichiometry 1:1. The difference circular dichroism (CD) spectra characteristic of binding of these ligands in the hairpin form are similar. They differ from CD patterns obtained for binding to the same duplex of another bis-netropsin in which two netropsin moieties were linked in a head-to-tail manner. This reflects the fact that tail-to-tail and head-to-tail bis-netropsins use parallel and antiparallel side-by-side motifs, respectively, for binding to DNA in the hairpin forms. The binding affinity of cis-diammine Pt(II)-bridged bis-netropsin in the hairpin form to DNA oligomers with nucleotide sequences 5'-CCTATATCC-3' (I), 5'-CCTTAATCC-3' (II), 5'-CCTTATTCC-3' (III), 5'-CCTTTTTCC-3' (IV) and 5'-CCAATTTCC-3' (V) decreases in the order I = II > III > IV > V . The binding of oligomethylene-bridged bis-netropsin in the hairpin form follows a similar hierarchy. An opposite order of sequence preferences is observed for partially bonded monodentate binding mode of the synthetic ligand.  相似文献   

11.
The interaction of short nucleotide duplexes with bis-netropsins, in which netropsin fragments are linked in the tail-to-tail orientation via cis-diammineplatinum group (<--Nt-Pt(NH3)-Nt-->) or aliphatic pentamethylene chain (<--Nt-(CH2)5-Nt-->), has been studied. Both the bis-netropsins have been shown to bind to DNA oligomer 5'-CCTATATCC-3' (I) as a hairpin with parallel orientation of netropsin fragments in 1:1 stoichiometry. Monodentate binding has been detected upon binding of bis-netropsins to other duplexes of sequences 5'-CCXCC-3'--where X = TTATT (II), TTAAT (III), TTTTT (IV), and AATTT (V)--along with the binding of bis-netropsins as a hairpin. The formation of dimeric antiparallel motif between the halves of two bound bis-netropsin molecules has been observed in the complexes of <--Nt-(CH2)5-Nt--> with DNA oligomers IV and V. The ratio of binding constant of bis-netropsin as a hairpin (K2) to monodentate binding constant (K1) has been shown to correlate with the width and/or conformational lability of DNA in the binding site. The share of bis-netropsin bound as a hairpin decreases in the order: TATAT > TTATT > TTAAT > TTTTT > AATTT, whereas the contribution of monodentate binding rises. The minimal strong binding site for <--Nt-Pt(NH3)-Nt--> and <--Nt-(CH2)5-Nt--> binding as a hairpin has been found to be DNA duplex 5'-CGTATACG-3'.  相似文献   

12.
The herpes simplex virus type 1 origin-binding protein, OBP, is a DNA helicase encoded by the UL9 gene. The protein binds in a sequence-specific manner to the viral origins of replication, two OriS sites and one OriL site. In order to search for efficient inhibitors of the OBP activity, we have obtained a recombinant origin-binding protein expressed in Escherichia coli cells. The UL9 gene has been amplified by PCR and inserted into a modified plasmid pET14 between NdeI and KpnI sites. The recombinant protein binds to Box I and Box II sequences and possesses helicase and ATPase activities. In the presence of ATP and viral protein ICP8 (single-strand DNA-binding protein), the initiator protein induces unwinding of the minimal OriS duplex (≈80?bp). The protein also binds to a single-stranded DNA (OriS?) containing a stable Box I-Box III hairpin and an unstable AT-rich hairpin at the 3′-end. In the present work, new minor groove binding ligands have been synthesized which are capable to inhibit the development of virus-induced cytopathic effect in cultured Vero cells. Studies on binding of these compounds to DNA and synthetic oligonucleotides have been performed by fluorescence methods, gel mobility shift analysis and footprinting assays. Footprinting studies have revealed that Pt-bis-netropsin and related molecules exhibit preferences for binding to the AT-spacer in OriS. The drugs stabilize structure of the AT-rich region and inhibit the fluctuation opening of AT-base pairs which is a prerequisite to unwinding of DNA by OBP. Kinetics of ATP-dependent unwinding of OriS in the presence and absence of netropsin derivatives have been studied by measuring the efficiency of Forster resonance energy transfer (FRET) between fluorophores attached to 5′- and 3′- ends of an oligonucleotide in the minimal OriS duplex. The results are consistent with the suggestion that OBP is the DNA Holiday junction (HJ) binding helicase. The protein induces conformation changes (bending and partial melting) of OriS duplexes and stimulates HJ formation in the absence of ATP. The antiviral activity of bis-netropsins is coupled with their ability to inhibit the fluctuation opening of АТ base pairs in the А?+?Т cluster and their capacity to stabilize the structure of the АТ-rich hairpin in the single-stranded oligonucleotide corresponding to the upper chain in the minimal duplex OriS. The antiviral activities of bis-netropsins in cell culture and their therapeutic effects on HSV1-infected laboratory animals have been studied.  相似文献   

13.
Abstract

Cis-diammine Pt(II)- bridged bis-netropsin and oligomethylene-bridged bis-netropsin in which two monomers are linked in a tail-to-tail manner bind to the DNA oligomer with the sequence 5′-CCTATATCC-3′ in a parallel-stranded hairpin form with a stoichiometry 1:1. The difference circular dichroism (CD) spectra characteristic of binding of these ligands in the hairpin form are similar. They differ from CD patterns obtained for binding to the same duplex of another bis-netropsin in which two netropsin moieties were linked in a head-to-tail manner. This reflects the fact that tail-to-tail and head-to-tail bis-netropsins use parallel and antiparallel side-by-side motifs, respectively, for binding to DNA in the hairpin forms. The binding affinity of cis -diammine Pt(II)- bridged bis-netropsin in the hairpin form to DNA oligomers with nucleotide sequences 5′-CCTATATCC-3′ (I), 5′-CCTTAATCC-3′ (II), 5′-CCTTATTCC-3′ (III), 5′-CCTTTTTCC-3′ (IV) and 5′-CCAATTTCC-3′ (V) decreases in the order I = II > III > IV> V. The binding of oligomethylene-bridged bis-netropsin in the hairpin form follows a similar hierarchy. An opposite order of sequence preferences is observed for partially bonded monodentate binding mode of the synthetic ligand.  相似文献   

14.
Bis-Netropsins with the C-ends of their netropsin fragments tethered via tetra- or pentamethylene linkers and with Gly or L-Lys-Gly residues on their N-ends were synthesized. The footprinting technique was used to study the specificity of bis-netropsin binding to the specially constructed DNA fragments containing various clusters of A · T pairs. It was found that the linker length affects the binding of bis-netropsins, with the tetramethylene linker providing better protection than the pentamethylene linker. It was shown that the newly synthesized bis-netropsins bind tighter to the 5"-A 4 T 4-3" sequence, whereas the bis-netropsin with a linker between the netropsin N-ends binds better to 5"-T 4 A 4-3" sequences.  相似文献   

15.
D W Martin  S P Deb  J S Klauer    S Deb 《Journal of virology》1991,65(8):4359-4369
The herpes simplex virus type 1 (HSV-1) OriS region resides within a 90-bp sequence that contains two binding sites for the origin-binding protein (OBP), designated sites I and II. A third presumptive OBP-binding site (III) within OriS has strong sequence similarity to sites I and II, but no sequence-specific OBP binding has yet been demonstrated at this site. We have generated mutations in sites I, II, and III and determined their replication efficiencies in a transient in vivo assay in the presence of a helper virus. Mutations in any one of the sites reduced DNA replication significantly. To study the role of OriS sequence elements in site I and the presumptive site III in DNA replication, we have also generated a series of mutations that span from site I across the presumptive binding site III. These mutants were tested for their ability to replicate and for the ability to bind OBP by using gel shift analyses. The results indicate that mutations across site I drastically reduce DNA replication. Triple-base-pair substitution mutations that fall within the crucial OBP-binding domain, 5'-YGYTCGCACT-3' (where Y represents C or T), show a reduced level of OBP binding and DNA replication. Substitution mutations in site I that are outside this crucial binding sequence show a more detrimental effect on DNA replication than on OBP binding. This suggests that these sequences are required for initiation of DNA replication but are not critical for OBP binding. Mutations across the presumptive OBP-binding site III also resulted in a loss in efficiency of DNA replication. These mutations influenced OBP binding to OriS in gel shift assays, even though the mutated sequences are not contained within known OBP-binding sites. Replacement of the wild-type site III with a perfect OBP-binding site I results in a drastic reduction of DNA replication. Thus, our DNA replication assays and in vitro DNA-binding studies suggest that the binding of the origin sequence by OBP is not the only determining factor for initiation of DNA replication in vivo.  相似文献   

16.
The herpes simplex virus type 1 genome contains three origins of replication: OriL and a diploid OriS. The origin-binding protein, the product of the UL9 gene, interacts with two sites within OriS, box I and box II. A third site, box III, which is homologous to boxes I and II, may also be a binding site for the origin-binding protein. Mutations in these three sites significantly reduce OriS-directed plasmid replication measured in transient replication assays. The reduction in replication efficiency of the mutants correlates well with the decrease in the ability to bind to the origin-binding protein, as determined by Elias et al. (P. Elias, C. M. Gustafsson, and O. Hammarsten, J. Biol. Chem. 265: 17167-17173, 1990). The effect of multiple mutations in boxes I, II, and III on plasmid replication suggests that there are multiple binding sites in OriS for the origin-binding protein. These studies indicate that proper interaction of the origin-binding protein with the OriS sequence is essential for OriS-directed DNA replication.  相似文献   

17.
In the long unique region of the genome of herpes simplex virus type 1 (HSV-1), the genes for DNA polymerase and the major DNA binding protein are arranged in a head to head manner, with an origin of DNA replication (termed OriL) located between them. This paper reports an 8400 base pair DNA sequence containing both genes and the origin, obtained mostly by M13/dideoxy analysis of plasmid cloned fragments. Amino acid sequences of the two proteins were deduced. Homologues of both genes were detected in the genome sequence of the distantly related Epstein-Barr virus (EBV). Arrangement of these HSV-1 and EBV genes differs in genome location and in relative orientation. A part of HSV-1 DNA polymerase was found to be similar to a sequence in adenovirus 2 DNA polymerase, but the significance of this is unclear. Since a DNA sequence in the locality of OriL deletes on plasmid cloning, this region was analysed using virus DNA. A palindrome with 72-residue arms was found, which shows great similarity to the better characterized origin, OriS.  相似文献   

18.
The Herpes simplex virus type I origin-binding protein, OBP, is encoded by the UL9 gene. OBP binds the origin of DNA replication, oriS, in a cooperative and sequence-specific manner. OBP is also an ATP-dependent DNA helicase. We have recently shown that single-stranded oriS folds into a unique and evolutionarily conserved conformation, oriS*, which is stably bound by OBP. OriS* contains a stable hairpin formed by complementary base pairing between box I and box III in oriS. Here we show that OBP, in the presence of the single-stranded DNA-binding protein ICP8, can convert an 80-base pair double-stranded minimal oriS fragment to oriS* and form an OBP-oriS* complex. The formation of an OBP-oriS* complex requires hydrolysable ATP. We also demonstrate that OBP in the presence of ICP8 and ATP promotes slow but specific and complete unwinding of duplex minimal oriS. The possibility that the OBP-oriS* complex may serve as an assembly site for the herpes virus replisome is discussed.  相似文献   

19.
The origin binding protein (OBP) of herpes simplex virus (HSV), which is essential for viral DNA replication, binds specifically to sequences within the viral replication origin(s) (for a review, see Challberg, M.D., and Kelly, T. J. (1989) Annu. Rev. Biochem. 58, 671-717). Using either a COOH-terminal OBP protein A fusion or the full-length protein, each expressed in Escherichia coli, we investigated the interaction of OBP with one HSV origin, OriS. Binding of OBP to a set of binding site variant sequences demonstrates that the 10-base pair sequence, 5' CGTTCGCACT 3', comprises the OBP-binding site. This sequence must be presented in the context of at least 15 total base pairs for high affinity binding, Ka = approximately 0.3 nM. Single base pair mutations in the central CGC sequence lower the affinity by several orders of magnitude, whereas a substitution at any of the other seven positions reduces the affinity by 10-fold or less. OBP binds with high affinity to duplex DNA containing mismatched base pairs. This property is exploited to analyze OBP binding to DNA heteroduplexes containing singly substituted mutant and wild-type DNA strands. For positions 2, 3, 5, 6, 7, 8, and 9, substitutions are tolerated on one or the other DNA strand, indicating that base-mediated interactions are limited to one base of each pair. For both Boxes I and II, these interactions are localized to one face of the DNA helix, forming a recognition surface in the major groove. In OriS, the 31 base pairs which separate Boxes I and II orient the two interaction surfaces to the same side of the DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号