首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
Tissue inhibitor of metalloproteinase (TIMP)-1 is an adipocyte-secreted protein upregulated in obesity which promotes adipose tissue development. Furthermore, the proinflammatory adipocytokines tumor necrosis factor alpha (TNFalpha) and interleukin (IL)-6 induce insulin resistance, and plasma concentrations are increased during weight gain. In the current study, the impact of TNFalpha and IL-6 on TIMP-1 mRNA and protein expression was determined in 3T3-L1 adipocytes. Interestingly, TNFalpha and IL-6 induced TIMP-1 protein secretion more than 3- and 2-fold, respectively. Furthermore, TIMP-1 mRNA was upregulated in a time- and dose-dependent fashion. Inhibitor experiments suggested that nuclear factor kappaB and p 44/42 mitogen-activated protein kinase are involved in both, basal and adipocytokine-induced TIMP-1 expression. Moreover, the thiazolidinedione troglitazone partly reversed TNFalpha- but not IL-6-induced TIMP-1 synthesis. Taken together, we demonstrate that TIMP-1 expression is selectively upregulated in fat cells by proinflammatory adipocytokines and might play a role in maintaining adipose tissue mass in obesity.  相似文献   

8.
9.
10.
Lipoic acid (LA) is a naturally occurring compound with antioxidant properties. Recent attention has been focused on the potential beneficial effects of LA on obesity and related metabolic disorders. Dietary supplementation with LA prevents insulin resistance and upregulates adiponectin, an insulin-sensitizing adipokine, in obese rodents. The aim of this study was to investigate the direct effects of LA on adiponectin production in cultured adipocytes, as well as the potential signaling pathways involved. For this purpose, fully differentiated 3T3-L1 adipocytes were treated with LA (1–500 μM) during 24 h. The amount of adiponectin secreted to media was detected by ELISA, while adiponectin mRNA expression was determined by RT-PCR. Treatment with LA induced a dose-dependent inhibition on adiponectin gene expression and protein secretion. Pretreatment with the PI3K inhibitor LY294002 inhibited adiponectin secretion and mRNA levels, and significantly potentiated the inhibitory effect of LA on adiponectin secretion. The AMPK activator AICAR also reduced adiponectin production, but surprisingly, it was able to reverse the LA-induced inhibition of adiponectin. The JNK inhibitor SP600125 and the MAPK inhibitor PD98059 did not modify the inhibitory effect of LA on adiponectin. In conclusion, our results revealed that LA reduces adiponectin secretion in 3T3-L1 adipocytes, which contrasts with the stimulation of adiponectin described after in vivo supplementation with LA, suggesting that an indirect mechanism or some in vivo metabolic processing is involved.  相似文献   

11.
Inhibition by insulin of resistin gene expression in 3T3-L1 adipocytes.   总被引:33,自引:0,他引:33  
Expression of the gene encoding resistin, a low molecular weight protein secreted from adipose tissue postulated to link obesity and type II diabetes, was examined in 3T3-L1 adipocytes. Resistin mRNA was detected in 3T3-L1 cells by day 3 following induction of differentiation into adipocytes; by day 4 the level of resistin mRNA peaked and remained high. The PPARgamma activators, rosiglitazone or darglitazone, reduced the level of resistin mRNA. Dexamethasone upregulated resistin mRNA level, but no effect was observed with the beta(3)-adrenoceptor agonist, BRL 37344. A substantial reduction in resistin mRNA level was observed with insulin, which induced decreases at physiological concentrations. Insulin may be a major inhibitor of resistin production, and this does not support a role for resistin in insulin resistance.  相似文献   

12.
Chemerin is a novel adipokine associated with obesity and insulin resistance. α-Lipoic acid (α-LA) has shown beneficial properties on diabetes and obesity. The aim of this study was to examine the effects of α-LA on chemerin production in adipocytes in absence or presence of TNF-α, insulin and AICAR. The potential signaling pathways involved in α-LA effects on chemerin were also analyzed. α-LA actions on chemerin were tested in differentiated 3T3-L1 adipocytes and in some cases in human subcutaneous and omental adipocytes. Chemerin mRNA levels were measured by RT-PCR and the amount of chemerin secreted to culture media was determined by ELISA. α-LA induced a concentration-dependent inhibition on both chemerin secretion and mRNA levels in 3T3-L1 adipocytes. The AMPK activator AICAR and the PI3K inhibitor LY294002 dramatically abrogated both chemerin secretion and gene expression, and further potentiated the inhibitory effect of α-LA on chemerin secretion. Insulin was able to partially reverse the inhibitory action of α-LA on chemerin secretion. α-LA also reduced basal chemerin secretion in both subcutaneous and omental adipocytes from overweight/obese subjects. Moreover, α-LA was able to abolish the stimulatory effects of the pro-inflammatory cytokine TNF-α on chemerin secretion. Our data demonstrated the ability of α-LA to inhibit chemerin production, an adipokine associated to obesity and metabolic syndrome, suggesting that the reduction of chemerin could contribute to the antiobesity/antidiabetic properties described for α-LA.  相似文献   

13.
14.
15.
Activation of SOCS-3 by resistin   总被引:44,自引:0,他引:44       下载免费PDF全文
Resistin is an adipocyte hormone that modulates glucose homeostasis. Here we show that in 3T3-L1 adipocytes, resistin attenuates multiple effects of insulin, including insulin receptor (IR) phosphorylation, IR substrate 1 (IRS-1) phosphorylation, phosphatidylinositol-3-kinase (PI3K) activation, phosphatidylinositol triphosphate production, and activation of protein kinase B/Akt. Remarkably, resistin treatment markedly induces the gene expression of suppressor of cytokine signaling 3 (SOCS-3), a known inhibitor of insulin signaling. The 50% effective dose for resistin induction of SOCS-3 is approximately 20 ng/ml, close to levels of resistin in serum. Association of SOCS-3 protein with the IR is also increased by resistin. Inhibition of SOCS function prevented resistin from antagonizing insulin action in adipocytes. SOCS-3 induction is the first cellular effect of resistin that is independent of insulin and is a likely mediator of resistin's inhibitory effect on insulin signaling in adipocytes.  相似文献   

16.
Brown JE  Onyango DJ  Dunmore SJ 《FEBS letters》2007,581(17):3273-3276
The adipokine resistin is known to induce insulin resistance in rodent tissues. Increases in adipose tissue mass are known to have a negative effect on pancreatic beta-cell function, although the mechanisms are poorly understood. This study investigated the effects of resistin on insulin secretion, insulin receptor expression and cell viability in pancreatic beta-cells. BTC-6 or BRIN-BD11 cells were treated for 24h with resistin, and insulin receptor expression, insulin secretion and cell viability were measured. Incubation with 40ng/ml resistin caused significant decreases in insulin receptor mRNA and protein expression, but did not affect insulin secretion. At low concentrations, resistin caused significant increases in cell viability. These data implicate resistin as a factor that may regulate beta-cell function/viability, and suggests a potential mechanism by which increased adiposity causes beta-cell dysfunction.  相似文献   

17.
18.

Background

Obesity, the most common cause of insulin resistance, is increasingly recognized as a low-grade inflammatory state. Adipocyte-derived resistin is a circulating protein implicated in insulin resistance in rodents, but the role of human resistin is uncertain because it is produced largely by macrophages.

Methods and Findings

The effect of endotoxin and cytokines on resistin gene and protein expression was studied in human primary blood monocytes differentiated into macrophages and in healthy human participants.Inflammatory endotoxin induced resistin in primary human macrophages via a cascade involving the secretion of inflammatory cytokines that circulate at increased levels in individuals with obesity. Induction of resistin was attenuated by drugs with dual insulin-sensitizing and anti-inflammatory properties that converge on NF-κB. In human study participants, experimental endotoxemia, which produces an insulin-resistant state, causes a dramatic rise in circulating resistin levels. Moreover, in patients with type 2 diabetes, serum resistin levels are correlated with levels of soluble tumor necrosis factor α receptor, an inflammatory marker linked to obesity, insulin resistance, and atherosclerosis.

Conclusions

Inflammation is a hyperresistinemic state in humans, and cytokine induction of resistin may contribute to insulin resistance in endotoxemia, obesity, and other inflammatory states.  相似文献   

19.
20.
Recently, monocyte chemoattractant protein (MCP)-1 has been characterized as a novel adipocytokine upregulated in obesity and insulin resistance which impairs insulin signaling in muscle and fat in vitro. Growing evidence, on the other hand, suggests that increased activity of the sympathetic nervous system is an integral part in the development of insulin resistance. In the current study, the impact of the beta-adrenergic agonist isoproterenol on MCP-1 mRNA synthesis and secretion was determined in 3T3-L1 adipocytes. Interestingly, isoproterenol increased MCP-1 secretion 3-fold. Furthermore, 10 microM isoproterenol acutely induced MCP-1 mRNA by up to 5.3-fold in a time-dependent fashion with significant stimulation seen at concentrations as low as 0.3 microM effector. Studies using pharmacological inhibitors suggested that basal and isoproterenol-induced MCP-1 expressions are mediated via beta-adrenergic receptors and protein kinase A. Moreover, acute activation of adenylyl cyclase by forskolin was sufficient to mimic the effects of isoproterenol. Taken together, our results demonstrate that isoproterenol induces MCP-1 expression and secretion via a classical GS-protein-coupled pathway and support the notion that MCP-1 might be an interesting novel candidate linking obesity and insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号