首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A procedure has been developed for extracting membranes from bacterial cells under conditions that keep a large fraction of bacterial polyribosomes intact. Freeze-thawing spheroplasts in the presence of deoxyribonuclease, followed by differential centrifugation, permits a separation of free and membrane-associated polyribosomes. The latter fraction contains as much as 40% of cell ribosomal ribonucleic acid (RNA) and 55% of cell messenger RNA (mRNA). Nascent polypeptides were divided almost equally between the two fractions, but 70 to 80% of alkaline phosphatase nascent chains, detected both chemically and immunologically, were derived from polyribosomes associated with the bacterial membrane. Analysis of the fractions for mRNA specific for the lac and trp operons by RNA-deoxyribonucleic acid hydridization showed somewhat larger amounts on membrane than on free polyribosomes, but enrichment for nascent alkaline phosphatase (a secreted protein) on membranes was consistently greater, suggesting that polyribosomes making secreted proteins are more tightly bound to membranes. Electron micrographs of the membrane preparations show relatively intact membranes with clusters of polyribosomes on their inner surfaces.  相似文献   

2.
The size classes of polyribosomes involved in the synthesis of ribulose-1,5-bisphosphate carboxylase large subunit were determined by binding radioiodinated specific antibodies to polyribosomal preparations from Chlamydomonas reinhardi. Antibodies specific to the denatured large subunit and to the native enzyme bound primarily to small polyribosomes (N = two to five ribosomes). The binding of antibodies to small polyribosomes was unexpected since the large subunit is a large polypeptide (molecular weight 55,000) coded for by a corresponding large mRNA (12-14S). Control experiments showed that this unexpected pattern of antibody binding was not a result of messenger RNA degradation, "run-off" of ribosomes from polyribosomes, or adventitious binding of the completed enzyme to a selected class of polyribosomes. In addition, polyribosomes bearing nascent large subunit chains have been immunoprecipitated from small polyribosome fractions. A large RNA species that can direct the synthesis of large subunit in vitro was extracted from small polyribosomes.  相似文献   

3.
Molecular Biology Reports - In mouse liver polyribosomes two poly A-containing messenger RNA species have been found: a short-lived one with a lifetime of 1 to 1.5 hr in the free polyribosomes and...  相似文献   

4.
The kinetics of appearance of newly made 60S and 40S ribosomal subunits in the free and membrane-bound ribosomal particles of P3K cells were explored by determining the specific radioactivities of their 18S and 28S RNA after various lengths of [3H]uridine pulse. Both 40S and 60S subunits enter free and membrane-bound polyribosomes at comparable rates from the cytoplasmic pool of newly made, free native subunits, the 40S subunits entering the native subunit pool and the polyribosomes slightly earlier than the 60S subunits. At all times, the specific radioactivity of the membrane-bound native 60S subunits was slightly lower than that of the polyribosomal 60S subunits. This indicates that the membrane-bound native 60S subunits are not precursors destined to enter membrane-bound polyribosomes and suggests that they result from the dissociation of ribosomes after chain termination. The results observed also suggest that the membrane-bound native 60S subunits are not reutilized before their release from the membranes, which probably takes place shortly after dissociation from their 40S subunits. The monoribosomes, both free and membrane-bound, had the lowest specific radioactivities in their subunits. Finally, a small amount of newly made native 40S subunits, containing 18S RNA of high specific radioactivity, and apparently also newly made messenger RNA were detected on the membranes. The high turnover of these membrane-bound native 40S subunits suggests that they may represent initiation complexes formed with mRNA which has just reached the membranes and which has not yet given rise to polyribosomes.  相似文献   

5.
6.
Summary The effect of cycloheximide upon protein synthesis, RNA metabolism, and polyribosome stability was investigated in the parent and in two temperature-sensitive mutant yeast strains defective respectively in the initiation of polypeptide chains and in messenger RNA synthesis. Cycloheximide at high concentrations (100 g/ml) severely inhibits but does not completely stop protein synthesis (Fig. 1); the incorporation of 14C-amino acids into polyribosome-associated nascent polypeptide chains continues at a slow but measurable rate (Figs. 2 and 3). Polyribosome structures are stable in the parent strain at 36° whether or not cycloheximide is present (Fig. 5). However, in Mutant ts- 136, a mutant defective in messenger as well as in stable RNA production, polyribosomes decay at the restrictive temperature (36° C) at the same rate whether or not cycloheximide is present (Fig. 5). Thus the maintenance of polyribosome structures is dependent upon the continued synthesis of messenger RNA even under conditions of extremely slow polypeptide chain elongation. In mutant ts- 187, a mutant defective in the initiation of polypeptide chains, all of the polyribosomes decay to monoribosomes within 2 minutes after a shift to the restrictive temperature; cycloheximide completely prevents this decay demonstrating that this mutant is capable of continued messenger RNA synthesis at 36° C. Consistent with these observations is the fact that a newly synthesized heterogeneously sedimenting RNA fraction continues to enter polyribosomes in the presence of cycloheximide whereas the entrance of newly synthesized ribosomal RNA is severely inhibited (Figs. 7, 8, 9). The decay or lack of decay of polyribosomes at the restrictive temperature is, therefore, a rapid and discriminating test for the analysis of mutants defective in macromolecule synthesis. Mutants which exhibit a decay of polyribosomes in the presence of cycloheximide are likely to be defective directly or indirectly in the synthesis of messenger RNA whereas mutants in which decay is prevented or slowed by cycloheximide are likely to be defective in some factor required for the association of ribosomes and messenger RNA.  相似文献   

7.
1. Pancreatic ribonuclease in dilute EDTA has been shown to condition rough-microsomal membranes from adult rat liver to accept exogenously added rat liver polyribosomes in vitro at 0-4 degrees C. Treated smooth membranes would not significantly interact with polyribosomes. 2. The conditioning process decreased the membrane RNA content and removed polyribosomes from vesicle surfaces as viewed electron-microscopically. 3. Binding to these conditioned membranes was shown to be uninfluenced by changes of temperature (0-37 degrees C) and pH (6.9-7.8) or the presence of cell sap, but was inhibited by increasing the concentration of potassium chloride. 4. Possession of a polyribosome-binding capacity by conditioned rough membranes was not dependent on adventitious materials that could be dislodged by high ionic strengths. 5. Trypsin treatment under mild conditions destroyed the binding capacity of ribonuclease-conditioned rough membranes. 6. A 2-10S residual RNA was recovered from ribonuclease-conditioned membranes, but its partial removal had no effect on the capacity of membranes to accept polyribosomes. However, some role for this residual RNA in attaching polyribosomes could not be discounted. 7. Evidence is considered that polyribosome-binding sites are intrinsic features of conditioned membranes isolated from rough-microsomal fractions, and that long-range ionic bonding is a primary factor in polyribosome interaction with these binding sites.  相似文献   

8.
When NIH/3T3 mouse fibroblasts were infected with the Moloney strain of murine leukemia virus, part of the viral genome RNA molecules were detected in polyribosomes of the infected cells early in the infectious cycle. The binding appears to be specific, since we could demonstrate the release of viral RNA from polyribosomes with EDTA. Moreover, when infection occurred in the presence of cycloheximide, most viral RNA molecules were detected in the free cytoplasm. Size analysis on polyribosomal viral RNA molecules indicated that two size class molecules, 38S and 23S, are present in polyribosomes at 3 h after infection. Analysis of the polyriboadenylate [poly(rA)] content of viral RNA extracted from infected polyribosomes demonstrated that such molecules bind with greatest abundance at 3 h after infection, as has been detected with total viral RNA. No molecules lacking poly(rA) stretches could be detected in polyribosomes. Furthermore, when a similar analysis was performed on unbound molecules present in the free cytoplasm, identical results were obtained. We conclude that no selection towards poly(rA)-containing viral molecules is evident on binding to polyribosomes. These findings suggest that the incoming viral genome of the Moloney strain of murine leukemia virus may serve as a messenger for the synthesis of one or more virus-specific proteins early after infection of mouse fibroblasts.  相似文献   

9.
Functional mitochondrial polyribosomes, containing newly synthesized RNA, are already formed by the 8-cell stage of embryogenesis. Evidence that the polyribosomes are functional is based upon their capability to translate in vitro and their sensitivity to EDTA and puromycin. After fertilization, two ribosomal and at least six messenger-like RNAs are synthesized within the mitochondria; however, only the messenger-like RNA is found to be associated with polyribosomes following a 0–3 h labeling period. These results suggest that translation of newly synthesized messenger RNA (mRNA) occurs within mitochondria of cleavage stage embryos and that this translation utilizes ribosomes which were formed in the egg prior to fertilization.  相似文献   

10.
Polyadenylic acid of membrane-bound polyribosomes is shown to be associated with rapidly sedimenting membrane structures. Most of this poly(A) remains attached to membranes after extensive degradation of polyribosomal messenger RNA with pancreatic ribonuclease. Previously, it was shown that exposure to EDTA removes up to 40% of the membrane-associated mRNA. In our experiments, 57% of the membrane-associated poly(A) still sediments with membrane structures after treatment with pancreatic ribonuclease followed by the addition of EDTA. This indicates that the association of about 60% of the membrane-bound poly(A) is EDTA-resistant, while the remainder is labile after removal of magnesium ions. Reconstruction experiments suggest that poly(A) from detergent-treated, membrane-derived polyribosomes is not trapped by other membrane structures. The poly(A)-containing RNA fragment that remains associated with the membranes after pancreatic ribonuclease treatment is shown to be a single peak at about 7 S, or about the size of cellular poly(A). Thus, the attachment site is almost pure poly(A). The poly(A)-containing, membrane-bound mRNA appears to be of a larger average size than total cellular poly(A)-containing RNA, as judged by its greater sedimentation value.  相似文献   

11.
Initial characterization of the unstable 5S-to-16S RNA fraction from developingMyxococcus xanthus cells reveals that it is rapidly labeled with radioactive RNA precursor and is associated with polyribosomes and released by puromycin from polyribosomes. The total unstable RNA fraction from 10-min pulse-labeled developing cells has a half-life of 13 min, compared with a 4-min half-life for unstable RNA (presumptive mRNA) from vegetative cells pulse-labeled for 2 min. We conclude that this developmental 5S-to-16S RNA contains messenger RNA and that this mRNA is stabilized compared with that in vegetative cells.  相似文献   

12.
《Experimental mycology》1987,11(3):176-186
The poly(A) RNA in zoospores ofBlastocladiella emersonii contains RNA synthesized during the growth phase (GP poly(A) RNA) and late sporulation (LS poly(A) RNA). LS poly(A) RNA synthesized during the final 30 minutes of sporulation is bound exclusively to polyribosomes which comprise approximately 50% of the total zoospore ribosome population. In contrast, GP poly(A) RNA is bound to zoospore monoribosomes. During the final 30 minutes of sporulation, GP poly(A) RNA which is bound to polyribosomes makes a transition to monoribosomes. Zoospore monoribosomes and RNA extracted from zoospore monoribosomes are inactivein vitro while both zoospore polyribosomes and RNA extracted from zoospore polyribosomes stimulate protein synthesis in the wheat germin vitro system. Sedimentation of poly(A) RNA from zoospore monoribosomes on dimethyl sulfoxide gradients revealed that the GP poly(A) RNA was of sufficiently high molecular weight to code for average-sized proteins. These denaturing gradients failed to activate the zoospore monoribosome RNA. The results suggest that the inability to translate zoospore monoribosomesin vitro is due to some property or modification of the zoospore monoribosome poly(A) RNA. Zoospore monoribosomes bound to poly(A) RNA contain an average of two tRNA molecules while zoospore polyribosomes have an average of less than one tRNA bound. This suggests the two classes of ribosomes are blocked at different steps in the elongation process.  相似文献   

13.
On the basis of association with endoplasmic reticulum membranes, poyribosomes isolated from mouse myeloma MOPC-104E were separated into two classes, membrane bound and free. The membrane-bound and free polyribosomes were then compared for their capacity to incorporate [35S]methionine into A-particle proteins in vitro. As revealed by a radioimmunological assay method, labeling of A-particle protein occurred with the membrane-bound polyribosomes but not with the free polyribosomes. Peptide mapping of the immunoprecipitated, in vitro [35S]methionine-labeled product confirmed that A-particle protein had been synthesized in vitro.  相似文献   

14.
A messenger activity for HPL was identified in normal human term placentas. The mRNA was translated in rabbit reticulocyte cell-free system. The HPL synthesized was quantified by a specific immunoprecipitation and further identified by electrophoresis on sodium dodecyl sulfate polyacrylamide gel. The HPL synthesized in the reticulocyte lysate exhibited a molecular weight between 20,000 and 22,000 daltons similar to the active hormone. The messenger RNA activity for HPL corresponded to a sedimentation coefficient of 11-12 S. Furthermore the messenger activity for HPL was preferentially associated with membrane bound polyribosomes than with free polyribosomes.  相似文献   

15.
The appearance of newly formed messenger RNA in polyribosomes of HeLa cells Is inhibited by over 85% by 3′deoxyadenosine (Penman, Rosbash &; Penman, 1970) probably due to the failure of normal attachment of poly(A) to heterogeneous nuclear RNA in the presence of this drug (Darnell, Philipson, Wall &; Adesnik, 1971). Results presented here show that the labeled RNA which does reach polysomes in the presence of 3′deoxyadenosine can be characterized as messenger RNA which contains smaller poly(A) segments than normal messenger RNA. The results of the present experiments suggest that all, or almost all, HeLa cell messenger RNA molecules (except for histone messenger RNA) are derived from nuclear RNA molecules which contain poly (A).  相似文献   

16.
Cytoplasmic and polyribosomal RNAs from Rous sarcoma virus-transformed and phenotypically reverted field vole cells were fractionated by rate-zonal sedimentation and hybridized with a (3)H-labeled complementary DNA viral probe to determine the size classes of virus-specific RNA present in these cell types. In contrast to Rous sarcoma virus-infected permissive avian cells, only two of three discrete species of virus-specific RNA were detected in the cytoplasm of these vole cells. These included genome-length 35S RNA and a 21S RNA. However, viral 28S RNA, routinely detected in the cytoplasm of productively infected avian cells, could not be found in cytoplasmic RNA from vole cells. In addition, a low-molecular-weight viral RNA sedimenting less than 16S was detected in both infected avian and vole cells. Because of its heterogeneity this latter species is most likely generated from the intracellular degradation of the larger viral RNAs. Both the viral 35S and 21S RNA were also found to be associated with total polyribosomes from these vole cells. Studies were also performed to determine the distribution of both total viral genomic and sarcoma-specific RNA sequences among the size classes of fractionated total polyribosomes. In both vole cell types the majority of cytoplasmic viral RNA sequences were also associated with polyribosomes and were similarly distributed among the size classes of total polyribosomes. Sarcoma-specific sequences were present on both the 35S and 21S RNA species. These data suggest that the expression of the viral transforming gene in revertant field vole cells may be controlled at some stage subsequent to translation of the viral RNA.  相似文献   

17.
18.
PERSISTENCE OF MESSENGER RNA THROUGH MITOSIS IN HELA CELLS   总被引:11,自引:6,他引:5       下载免费PDF全文
The decrease in protein synthesis which occurs in mammalian cells during cell division is associated with significant disaggregation of polyribosomes. For determining whether messenger RNA survives this disaggregation, the reformation of polyribosomes was investigated in synchronized HeLa cells as they progressed from metaphase into interphase in the presence of 2 µg/ml Actinomycin D. The persistence of messenger during cell division was evidenced by: (1) a progressive increase in the rate of protein synthesis in both treated and untreated cells for 45 min after metaphase; (2) reformation of polyribosomes, as determined by both sucrose gradients and electron microscopy, within 30 min after the addition of Actinomycin D to metaphase cells; (3) the persistence of approximately 50% of the rapidly labeled nonribosomal RNA which had associated with polyribosomes just before metaphase; (4) the resumption of synthesis, following cell division, of 6 selected peptides in Actinomycin-treated cells.  相似文献   

19.
Profiles of polyribosomes were obtained from etiolated stem segments of Pisum sativum L. var. Alaska isolated in various buffers. Tissue homogenized in a medium containing 0.2 m tris-HCl, pH 8.5, 0.2 m sucrose, 30 mm MgCl2, and 60 mm KCl yielded polyribosomes exhibiting far less degradation than tissue homogenized in conventional media containing tris-HCl at lower ionic strength and pH. A further decrease in degradation was found when polyribosomes were sedimented through a sucrose pad buffered at pH 8.5 prior to centrifugation. Increased separation was obtained using heavy (125-500 mg/ml), linear sucrose gradients. Using these techniques, messenger RNA species bearing up to 12 ribosomes (dodecamers) were resolved, with messenger RNA chains bearing 9 ribosomes (nonamers) being the most abundant (having the highest absorption peak). The data presented suggest that buffer of high ionic strength and high pH was more effective in preventing degradation of polyribosomes than was diethyl pyrocarbonate and, furthermore, that ratios involving large polyribosomes (hexamers and larger) were more accurate indices of degradation than were ratios involving total polyribosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号