首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Programmed cell death is an essential process for proper neural development. Cell death, with its similar regulatory and executory mechanisms, also contributes to the origin or progression of many or even all neurodegenerative diseases. An understanding of the mechanisms that regulate cell death during neural development may provide new targets and tools to prevent neurodegeneration. Many studies that have focused mainly on insulin-like growth factor-I (IGF-I), have shown that insulin-related growth factors are widely expressed in the developing and adult nervous system, and positively modulate a number of processes during neural development, as well as in adult neuronal and glial physiology. These factors also show neuroprotective effects following neural damage. Although some specific actions have been demonstrated to be anti-apoptotic, we propose that a broad neuroprotective role is the foundation for many of the observed functions of the insulin-related growth factors, whose therapeutical potential for nervous system disorders may be greater than currently accepted.  相似文献   

2.
Neurons completely transform how they regulate cell death over the course of their lifetimes. Developing neurons freely activate cell death pathways to fine-tune the number of neurons that are needed during the precise formation of neural networks. However, the regulatory balance between life and death shifts as neurons mature beyond early development. Mature neurons promote survival at all costs by employing multiple, often redundant, strategies to prevent cell death by apoptosis. This dramatic shift from permitting cell death to ensuring cellular survival is critical, as these post-mitotic cells must provide neuronal circuitry for an organism''s entire lifetime. Importantly, as many neurodegenerative diseases afflict adult neuronal populations, the survival mechanisms in mature neurons are likely to be either reversed or circumvented during neurodegeneration. Examining the adaptations for inhibiting apoptosis during neuronal maturation is key to comprehending not just how neurons survive long term, but may also provide insight for understanding how neuronal toxicity in various neurodegenerative diseases may ultimately lead to cell death.  相似文献   

3.
The plasticity of neural stem/progenitor cells allows a variety of different responses to many environmental cues. In the past decade, significant research has gone into understanding the regulation of neural stem/progenitor cell properties, because of their promise for cell replacement therapies in adult neurological diseases. Both endogenous and grafted neural stem/progenitor cells are known to have the ability to migrate long distances to lesioned sites after brain injury and differentiate into new neurons. Several chemokines and growth factors, including stromal cell-derived factor-1 and vascular endothelial growth factor, have been shown to stimulate the proliferation, differentiation, and migration of neural stem/progenitor cells, and investigators have now begun to identify the critical downstream effectors and signaling mechanisms that regulate these processes. Both our own lab and others have shown that the extracellular matrix and matrix remodeling factors play a critical role in directing cell differentiation and migration of adult neural stem/progenitor cells within injured sites. Identification of these and other molecular pathways involved in stem cell homing into ischemic areas is vital for the development of new treatments. To ensure the best functional recovery, regenerative therapy may require the application of a combination approach that includes cell replacement, trophic support, and neural protection. Here we review the current state of our knowledge about endogenous adult and exogenous neural stem/progenitor cells as potential therapeutic agents for central nervous system injuries.  相似文献   

4.
Ischemic stroke, although causing brain infarction and neurological deficits, can activate innate neuroprotective mechanisms, including regional mechanisms within the ischemic brain and distant mechanisms from non-ischemic organs such as the liver, spleen, and pancreas, supporting neuronal survival, confining brain infarction, and alleviating neurological deficits. Both regional and distant mechanisms are defined as systems neuroprotective mechanisms. The regional neuroprotective mechanisms involve release and activation of neuroprotective factors such as adenosine and bradykinin, inflammatory responses, expression of growth factors such as nerve growth factors and neurotrophins, and activation and differentiation of resident neural stem cells to neurons and glial cells. The distant neuroprotective mechanisms are implemented by expression and release of endocrine neuroprotective factors such as fibroblast growth factor 21, resistin like molecule γ, and trefoil factor 3 from the liver; brain-derived neurotrophic factor and nerve growth factor from the spleen; and neurotrophin 3 and vascular endothelial growth factor C from the pancreas. Furthermore, ischemic stroke induces mobilization of bone marrow hematopoietic stem cells and endothelial progenitor cells into the circulatory system and brain, contributing to neuroprotection. The regional and distant mechanisms may act in coordination and synergy to protect the ischemic brain from injury and death. This paper addresses these mechanisms and associated signaling networks.  相似文献   

5.
This review discusses current knowledge about cell death in the developing enteric nervous system (ENS). It also includes findings about the molecular mechanisms by which such death is mediated. Additional consideration is given to trophic factors that contribute to survival of the precursors and neurons and glia of the ENS, as well to genes that, when mutated or deleted, trigger their death. Although further confirmation is needed, present observations support the view that enteric neural crest-derived precursor cells en route to the gut undergo substantial levels of apoptotic death, but that once these cells colonize the gut, there is relatively little death of precursor cells or of neurons and glia during the fetal period. There are also indications that normal neuron loss occurs in the ENS, but at times beyond the perinatal stage. Taken together, these findings suggest that ENS development is similar is some ways, but different in others from extra-enteric areas of the vertebrate central and peripheral nervous systems, in which large-scale apoptotic death of precursor neurons and glia occurs during the fetal and perinatal periods. Potential reasons for these differences are discussed such as a fetal enteric microenvironment that is especially rich in trophic support. In addition to the cell death that occurs during normal ENS development, this review discusses mechanisms of experimentally-induced ENS cell death, such as those that are associated with defective glial cell-line derived neurotrophic factor/Ret signaling, which are an animal model of human congenital megacolon (aganglionosis; Hirschsprung’s disease). Such considerations underscore the importance of understanding cell death in the developing ENS, not just from a curiosity-driven point of view, but also because the pathophysiology behind many disorders of human gastrointestinal function may originate in abnormalities of the mechanisms that govern cell survival and death during ENS development.  相似文献   

6.
Surprisingly little is known about the mechanisms that trigger the onset of AD (Alzheimer's disease) in sporadic forms. A number of risk factors have been identified that may shed light on the mechanisms that may trigger or facilitate the development of AD. Recently, T2DM (Type 2 diabetes mellitus) has been identified as a risk factor for AD. A common observation for both conditions is the desensitization of insulin receptors in the brain. Insulin acts as a growth factor in the brain and is neuroprotective, activates dendritic sprouting, regeneration and stem cell proliferation. The impairment of this important growth factor signal may facilitate the development of AD. Insulin as well as other growth factors have shown neuroprotective properties in preclinical and clinical trials. Several drugs have been developed to treat T2DM, which re-sensitize insulin receptors and may be of use to prevent neurodegenerative processes in the brain. In particular, the incretins GLP-1 (glucagon-like peptide-1) and GIP (glucose-dependent insolinotropic polypeptide) are hormones that re-sensitize insulin signalling. Incretins also have similar growth-factor-like properties as insulin and are neuroprotective. In mouse models of AD, GLP-1 receptor agonists reduce amyloid plaque formation, reduce the inflammation response in the brain, protect neurons from oxidative stress, induce neurite outgrowth, and protect synaptic plasticity and memory formation from the detrimental effects caused by β-amyloid production and inflammation. Other growth factors such as BDNF (brain-derived neurotrophic factor), NGF (nerve growth factor) or IGF-1 (insulin-like growth factor 1) also have shown a range of neuroprotective properties in preclinical studies. These results show that these growth factors activate similar cell signalling mechanisms that are protective and regenerative, and suggest that the initial process that may trigger the cascade of neurodegenerative events in AD could be the impairment of growth factor signalling such as early insulin receptor desensitization.  相似文献   

7.
The insulin-like growth factor receptor type 1 (IGF1R) signalling pathway is activated in the mammalian nervous system from early developmental stages. Its major effect on developing neural cells is to promote their growth and survival. This pathway can integrate its action with signalling pathways of growth and morphogenetic factors that induce cell fate specification and selective expansion of specified neural cell subsets. This suggests that during developmental and adult neurogenesis cellular responses to many signalling factors, including ligands of Notch, sonic hedgehog, fibroblast growth factor family members, ligands of the epidermal growth factor receptor, bone morphogenetic proteins and Wingless and Int-1, may be modified by co-activation of the IGF1R. Modulation of cell migration is another possible role that IGF1R activation may play in neurogenesis. Here, I briefly overview neurogenesis and discuss a role for IGF1R-mediated signalling in the developing and mature nervous system with emphasis on crosstalk between the signalling pathways of the IGF1R and other factors regulating neural cell development and migration. Studies on neural as well as on non-neural cells are highlighted because it may be interesting to test in neurogenic paradigms some of the models based on the information obtained in studies on non-neural cell types.  相似文献   

8.
Mechanisms that regulate neural stem cell activity in the adult brain are tightly coordinated. They provide new neurons and glia in regions associated with high cellular and functional plasticity, after injury, or during neurodegeneration. Because of the proliferative and plastic potential of neural stem cells, they are currently thought to escape their physiological control mechanisms and transform to cancer stem cells. Signals provided by proteins of the transforming growth factor (TGF)-beta family might represent a system by which neural stem cells are controlled under physiological conditions but released from this control after transformation to cancer stem cells. TGF-beta is a multifunctional cytokine involved in various physiological and patho-physiological processes of the brain. It is induced in the adult brain after injury or hypoxia and during neurodegeneration when it modulates and dampens inflammatory responses. After injury, although TGF-beta is neuroprotective, it may limit the self-repair of the brain by inhibiting neural stem cell proliferation. Similar to its effect on neural stem cells, TGF-beta reveals anti-proliferative control on most cell types; however, paradoxically, many brain tumors escape from TGF-beta control. Moreover, brain tumors develop mechanisms that change the anti-proliferative influence of TGF-beta into oncogenic cues, mainly by orchestrating a multitude of TGF-beta-mediated effects upon matrix, migration and invasion, angiogenesis, and, most importantly, immune escape mechanisms. Thus, TGF-beta is involved in tumor progression. This review focuses on TGF-beta and its role in the regulation and control of neural and of brain-cancer stem cells. This work was supported by the German Federal Ministry of Education and Research (BMBF no. 01GA0510 and no. 0312134) and by the Bavarian State Ministry of Sciences, Research and the Arts, "Forneurocell grant".  相似文献   

9.
10.
During development, elimination of excess cells through programmed cell death (PCD) is essential for the establishment and maintenance of the nervous system. In many brain regions, development and major histogenesis continue beyond postnatal stages, and therefore, signs of neurogenesis and PCD are frequently observed in these postnatal brain regions. Furthermore, some brain regions maintain neurogenic potential throughout life, and continuous genesis and PCD play critical roles in sculpting these adult neural circuits. Although similar regulatory mechanisms that control PCD during development appear to also control PCD in the adult brain, adult-generated neurons must integrate into mature neural circuits for their survival. This novel requirement appears to result in unique features of PCD in the adult brain. In this article, we summarize recent findings related to PCD in the early postnatal and adult brain in rodents.  相似文献   

11.
The adult brain requires a constant trophic input for appropriate function. Although the main source of trophic factors for mature neurons is considered to arise locally from glial cells and synaptic partners, recent evidence suggests that hormonal-like influences from distant sources may also be important. These include not only relatively well-characterized steroid hormones that cross the brain barriers, but also blood-borne protein growth factors able to cross the barriers and exert unexpected, albeit specific, trophic actions in diverse brain areas. Insulin-like growth factor I (IGF-I) is until now the serum neurotrophic factor whose actions on the adult brain are best-characterized. This is because IGF-I has been known for many years to be present in serum, whereas the presence in the circulation of other more classical neurotrophic factors has only recently been recognized. Thus, new evidence strongly suggests that IGF-I, and other blood-borne neurotrophic factors such as Fibroblast Growth Factor (FGF-2) or the neurotrophins, exert a tonic trophic input on brain cells, providing a mechanism for what we may refer to as neuroprotective surveillance. Protective surveillance includes "first-line" defense mechanisms ranging from blockade of neuronal death after a wide variety of cellular insults to upregulation of neurogenesis when defenses against neuronal death are overcome. Most importantly, surveillance should also encompass modulation of homeostatic mechanisms to prevent neuronal derangement. These will include modulation of basic cellular processes such as metabolic demands and maintainance of cell-membrane potential as well as more complex processes such as regulation of neuronal plasticity to keep neurons able to respond to constantly changing functional demands.  相似文献   

12.
Adult sexual dimorphism in neuronal cell number is controlled by estrogen exposure during a tightly defined period of rat brain development. The mechanisms of estrogen's effect are unknown; one possibility is regulation of programmed cell death (apoptosis). In this study we have shown that estradiol can function as a neuroprotective agent or an inducer of apoptosis, depending on the estrogen receptor-subtype present in the cell. Thus, ERalpha has a neuroprotective effect, while ERbeta mediates the induction of apoptosis in neuronal cells. Moreover, we show that estrogen-induced apoptosis through ER-beta requires the expression of Fas- and Fas ligand (FasL) proteins, since the absence of FasL in neurons prevents this effect. Furthermore, we demonstrate that microglia-secreted products induce the expression of FasL necessary to mediate estradiol-ERbeta apoptotic effect. These findings may explain the dichotomous effect of fetal estradiol on the adult neuronal number.  相似文献   

13.
Neurovascular signalling defects in neurodegeneration   总被引:1,自引:0,他引:1  
It is anticipated that by 2040 neurodegeneration will affect 40 million people worldwide, more than twice as many as today. The traditional neurocentric view holds that neurodegeneration is caused primarily by intrinsic neuronal defects. However, recent evidence indicates that the millions of blood vessels that criss-cross the nervous system might not be the silent bystanders they were originally considered. Indeed, recent genetic studies reveal that insufficient production of angiogenic signals, which stimulate the growth of blood vessels, can cause neurodegeneration. Remarkably, some angiogenic factors can also regulate neuroregeneration, and have direct neuroprotective and other effects on various neural cell types. Here we provide an overview of the molecules that affect both neural and vascular cell processes--to underline their duality, we term them angioneurins. Unravelling the molecular mechanisms by which these angioneurins act might create opportunities for developing new neurovascular medicine.  相似文献   

14.
15.
Programmed cell death is an orchestrated form of cell death in which cells are actively involved in their own demise. During neural development in mammals, many progenitor cells, immature cells or differentiated cells undergo the most clearly characterized type of cell death, apoptosis. Several pathways of apoptosis have been linked to neural development, but according to the numerous and striking phenotypes observed when apoptotic genes are inactivated, the mitochondrial death-route is the most important pathway in this context. Here, we discuss the relative importance of pro-growth/pro-death factors in the control of neural tissue development. We also discuss the impact of studying programmed cell death in development in order to better understand the basis of several human diseases and embryonic defects of the nervous system.  相似文献   

16.
17.
Early neural cell death: dying to become neurons   总被引:1,自引:0,他引:1  
The importance of programmed cell death (PCD) during vertebrate development has been well established. During the development of the nervous system in particular, neurotrophic cell death in innervating neurons matches the number of neurons to the size of their target field. However, PCD also occurs during earlier stages of neural development, within populations of proliferating neural precursors and newly postmitotic neuroblasts, all of which are not yet fully differentiated. This review addresses early neural PCD, which is distinct from neurotrophic death in differentiated neurons. Although early neural PCD is observed in a range of organisms, from Caenorhabditis elegans to mouse, the role and the regulation of early neural PCD are not well understood. The regulation of early neural PCD can be inferred from the function of factors such as bone morphogenetic proteins (BMPs), Wnts, fibroblast growth factors (FGFs), and Sonic Hedgehog (Shh), which regulate both early neural development and PCD occurring in other developmental processes. Cell number control, removal of damaged or misspecified cells (spatially or temporally), and selection are the proposed roles early neural PCDs play during neural development. Data from developmental PCD in C. elegans and Drosophila provide insights into the possible signaling pathways integrating PCD with other processes during early neural development and the roles they might play.  相似文献   

18.
Growth factors are a large family of polypeptide molecules that regulate cell division in many tissues by autocrine or paracrine mechanisms. Depending on what receptors are activated, growth factors can initiate mitogenic, antiproliferative, or trophic effects, that is, growth factors act as positive or negative modulators of cell proliferation. Therefore, growth factors do not only play an important role in embryonic development and adult tissue homeostasis, but also in pathological situations like infection, wound healing, and tumorigenesis. Consequently, the application of growth factors, or vice versa the application of substances which are directed against growth factors like antigrowth factor antibodies, may have therapeutic applications. This review provides a brief account of what we know regarding growth factors in otorhinolaryngology, particularly in the field of otology, wound healing, oncology, peripheral nerve regeneration, and rhinology.  相似文献   

19.
20.
Phylogeny of a neural cell adhesion molecule   总被引:7,自引:0,他引:7  
The phylogeny of adhesion among cells derived from neural tissue has been examined using a combination of functional and immunological analyses. The presence of the neural cell adhesion molecule (NCAM) was evaluated with respect to NCAM-specific antigenic determinants attached to a polypeptide chain with appropriate electrophoretic properties. By these criteria, NCAM-like molecules were detected in all embryonic and adult vertebrates tested, and an adult mollusc, but not in an adult insect, crustacean, or nematode. The functional assays measured adhesiveness by simple aggregation of neural membrane vesicles, as well as by NCAM-specific binding between membranes from different species. The presence of the NCAM antigen in vertebrate membranes correlated with binding activity in both the NCAM-specific and general adhesion assays, implying that the adhesiveness of these membranes largely reflects NCAM-mediated binding. The results also indicate that NCAM function has been conserved during the evolution of vertebrates, and supports the possibility that mechanisms of nerve-nerve, nerve-muscle, and nerve-glial interaction, which have been demonstrated previously to involve NCAM, may be similar for many chordates. Whereas NCAM was not detected in adult fly and worm, these species did express NCAM-like antigens transiently during early development. These results are consistent with the hypothesis that NCAM is required during several periods of development, and that the functions of this molecule in nematodes and insects may be distinct from or a subset of those that occur in vertebrates. The expanded role of the molecule represented by its expression during later stages of vertebrate development may thus have been an important contribution to the evolution of chordates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号