首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
beta(2)-Glycoprotein I (beta(2)-GPI) is a plasma protein that binds to negatively charged substances such as DNA, heparin, and anionic phospholipids. The interaction of beta(2)-GPI with anionic phospholipids is intriguing in the context of the autoimmune disease antiphospholipid syndrome. To extend understanding of the binding mechanism to phospholipids, the interactions of beta(2)-GPI with amphiphiles, i.e., sodium lauryl sulfate and lysophospholipids, were examined. These amphiphiles induced the aggregation of beta(2)-GPI below the critical micelle concentration, indicating that the interaction of beta(2)-GPI with monodispersed amphiphiles is unstable, resulting in the formation of large aggregates. However, highly soluble monocaproylphosphatidic acid did not induce aggregation, suggesting that the hydrophobicity of the acyl chain is also an important factor for aggregate formation in addition to negative charges in the headgroup. A series of experiments using deletion mutants and a peptide showed that the fifth domain of beta(2)-GPI (domain V) is responsible for formation of aggregates observed for intact full-length beta(2)-GPI. In addition, the flexible loop (F307-C326) in the C-terminal of domain V, which consists of hydrophobic and positively charged residues, was identified as the important region for aggregation. These results indicate that beta(2)-GPI binds to the amphiphiles through the flexible loop of domain V, resulting in formation of large aggregates where both electrostatic and hydrophobic interactions are involved.  相似文献   

2.
To understand the mechanism of the interaction between human beta(2)-glycoprotein I (beta(2)-GPI) and negatively charged phospholipids, we determined the three-dimensional solution structure of the fifth domain of beta(2)-GPI by heteronuclear multidimensional NMR. The results showed that the molecule is composed of well-defined four anti-parallel beta-strands and two short alpha-helices, as well as a long highly flexible loop. Backbone dynamic analysis demonstrated significant mobility of the flexible loop on a subnanosecond time scale. Structural modeling of the nicked fifth domain, in which the Lys317-Thr318 peptide bond was specifically cleaved, revealed the importance of this long C-terminal loop for the interaction between beta(2)-GPI and negatively charged phospholipids. A titration experiment with the anionic surfactant SDS showed that this highly mobile loop, as well as the short beta-hairpin between betaC and betaD strands, which is rich in positively charged residues, specifically interact with the surfactant. The mobile loop, together with the surrounding positively charged residues, probably construct the binding site for negatively charged phospholipids such as cardiolipin.  相似文献   

3.
To clarify the mechanism of interaction between chaperonin GroEL and substrate proteins, we studied the conformational changes; of the fifth domain of human beta(2)-glycoprotein I upon binding to GroEL. The fifth domain has a large flexible loop, containing several hydrophobic residues surrounded by positively charged residues, which has been proposed to be responsible for the binding of beta(2)-glycoprotein I to negatively charged phospholipid membranes. The reduction by dithiothreitol of the three intramolecular disulfide bonds of the fifth domain was accelerated in the presence of stoichiometric amounts of GroEL, indicating that the fifth domain was destabilized upon interaction with GroEL. To clarify the GroEL-induced destabilization at the atomic level, we performed H/(2)H exchange of amide protons using heteronuclear NMR spectroscopy. The presence of GroEL promoted the H/(2)H exchange of most of the protected amide protons, suggesting that, although the flexible loop of the fifth domain is likely to be responsible for the initiation of binding to GroEL, the interaction with GroEL destabilizes the overall conformation of the fifth domain.  相似文献   

4.
目的:旨在重组表达人源β2-GPI及其第V结构域基因,探讨后者在抗自身免疫性动脉粥样硬化实验中的干预作用。方法:以实验室保存的CTA727-1重组质粒为模板克隆β2-GPI及其第V结构域基因,构建pET32-β2-GPI和pET32-DV重组表达载体,分别转化至大肠杆菌Rosetta-gami。经IPTG诱导表达,镍离子亲和层析柱纯化重组蛋白,并采用Western blot、HPTLC和ELISA方法验证了重组蛋白的活性与功能。结果:β2-GPI及其第V结构域目的基因被分别克隆至原核表达载体pET-32a-c(+),诱导出具备CL和oxLig-1结合活性的β2-GPI 及第V结构域融合蛋白,ELISA实验显示第V结构域融合蛋白可抑制oxLig-1/(r)β2-GPI/Antibody免疫复合物的形成。结论:成功构建了pET32-β2-GPI及pET32-DV表达载体,获得高水平表达且具备活性的β2-GPI 和第V结构域重组蛋白,为研究治疗动脉粥样硬化等疾病的多肽药物奠定了基础。  相似文献   

5.
6.
Cavity complementation has been observed in many proteins, where an appropriate small molecule binds to a cavity-forming mutant. Here, the binding of compounds to the W191G cavity mutant of cytochrome c peroxidase is characterized by X-ray crystallography and binding thermodynamics. Unlike cavities created by removal of hydrophobic side-chains, the W191G cavity does not bind neutral or hydrophobic compounds, but displays a strong specificity for heterocyclic cations, consistent with the role of the protein to stabilize a tryptophan radical at this site. Ligand dissociation constants for the protonated cationic state ranged from 6 microM for 2-amino-5-methylthiazole to 1 mM for neutral ligands, and binding was associated with a large enthalpy-entropy compensation. X-ray structures show that each of 18 compounds with binding behavior bind specifically within the artificial cavity and not elsewhere in the protein. The compounds make multiple hydrogen bonds to the cavity walls using a subset of the interactions seen between the protein and solvent in the absence of ligand. For all ligands, every atom that is capable of making a hydrogen bond does so with either protein or solvent. The most often seen interaction is to Asp235, and most compounds bind with a specific orientation that is defined by their ability to interact with this residue. Four of the ligands do not have conventional hydrogen bonding atoms, but were nevertheless observed to orient their most polar CH bond towards Asp235. Two of the larger ligands induce disorder in a surface loop between Pro190 and Asn195 that has been identified as a mobile gate to cavity access. Despite the predominance of hydrogen bonding and electrostatic interactions, the small variation in observed binding free energies were not correlated readily with the strength, type or number of hydrogen bonds or with calculated electrostatic energies alone. Thus, as with naturally occurring binding sites, affinities to W191G are likely to be due to a subtle balance of polar, non-polar, and solvation terms. These studies demonstrate how cavity complementation and judicious choice of site can be used to produce a protein template with an unusual ligand-binding specificity.  相似文献   

7.
8-Anilino-1-naphthalene sulfonate (ANS) and its covalent dimer bis-ANS are widely used for titrating hydrophobic surfaces of proteins. Interest to understand the nature of interaction of these dyes with proteins was seriously pursued. However as the techniques used in these studies varied, they often provided varied information regarding stoichiometry, binding affinity, actual binding sites etc. In the present study, we used combination of computation methods (docking and MD simulation) and experimental methods (mutations, steady-state and time-resolved fluorescence) to investigate bis-ANS interaction with Bacillus subtilis lipase. We identified seven binding sites for bis-ANS on lipase using computational docking and MD simulation and verified these data using a set of single amino acid substituted mutants. Docking and MD simulation studies indicated that the binding sites were various indentations and grooves on protein surface with hydrophobic characteristics. Both hydrophobic and ionic interactions were involved in each of these binding events. We further examine the fluorescence properties of bis-ANS bound to mutant lipases that either gained or lost a binding site. Our results indicated that neither gain nor loss of single binding site caused any change in fluorescence lifetimes (and their relative amplitudes) of mutant lipase-bound bis-ANS in comparison to that bound to wild type; hence, it suggested that nature of bis-ANS binding to each of the sites in lipase was very similar.  相似文献   

8.
9.
The extent of hydrophobic exposure upon bis-ANS binding to the functional apical domain fragment of GroEL, or minichaperone (residues 191-345), was investigated and compared with that of the GroEL tetradecamer. Although a total of seven molecules of bis-ANS bind cooperatively to this minichaperone, most of the hydrophobic sites were induced following initial binding of one to two molecules of probe. From the equilibrium and kinetics studies at low bis-ANS concentrations, it is evident that the native apical domain is converted to an intermediate conformation with increased hydrophobic surfaces. This intermediate binds additional bis-ANS molecules. Tyrosine fluorescence detected denaturation demonstrated that bis-ANS can destabilize the apical domain. The results from (i) bis-ANS titrations, (ii) urea denaturation studies in the presence and absence of bis-ANS, and (iii) intrinsic tyrosine fluorescence studies of the apical domain are consistent with a model in which bis-ANS binds tightly to the intermediate state, relatively weakly to the native state, and little to the denatured state. The results suggest that the conformational changes seen in apical domain fragments are not seen in the intact GroEL oligomer due to restrictions imposed by connections of the apical domain to the intermediate domain and suppression of movement due to quaternary structure.  相似文献   

10.
The C-type lectin-like domain superfamily   总被引:7,自引:0,他引:7  
Zelensky AN  Gready JE 《The FEBS journal》2005,272(24):6179-6217
The superfamily of proteins containing C-type lectin-like domains (CTLDs) is a large group of extracellular Metazoan proteins with diverse functions. The CTLD structure has a characteristic double-loop ('loop-in-a-loop') stabilized by two highly conserved disulfide bridges located at the bases of the loops, as well as a set of conserved hydrophobic and polar interactions. The second loop, called the long loop region, is structurally and evolutionarily flexible, and is involved in Ca2+-dependent carbohydrate binding and interaction with other ligands. This loop is completely absent in a subset of CTLDs, which we refer to as compact CTLDs; these include the Link/PTR domain and bacterial CTLDs. CTLD-containing proteins (CTLDcps) were originally classified into seven groups based on their overall domain structure. Analyses of the superfamily representation in several completely sequenced genomes have added 10 new groups to the classification, and shown that it is applicable only to vertebrate CTLDcps; despite the abundance of CTLDcps in the invertebrate genomes studied, the domain architectures of these proteins do not match those of the vertebrate groups. Ca2+-dependent carbohydrate binding is the most common CTLD function in vertebrates, and apparently the ancestral one, as suggested by the many humoral defense CTLDcps characterized in insects and other invertebrates. However, many CTLDs have evolved to specifically recognize protein, lipid and inorganic ligands, including the vertebrate clade-specific snake venoms, and fish antifreeze and bird egg-shell proteins. Recent studies highlight the functional versatility of this protein superfamily and the CTLD scaffold, and suggest further interesting discoveries have yet to be made.  相似文献   

11.
Lipoprotein lipase (LPL) is dependent on apolipoprotein CII (apoCII), a component of plasma lipoproteins, for function in vivo. The hydrophobic fluorescent probe 1,1'-bis(anilino)-4,4'-bis(naphthalene)-8,8'-disulfonate (bis-ANS) was found to be a potent inhibitor of LPL. ApoCII prevented the inhibition by bis-ANS, and was also able to restore the activity of inhibited LPL in a competitive manner, but only with triacylglycerols with acyl chains longer than three carbons. Studies of fluorescence and surface plasmon resonance indicated that LPL has an exposed hydrophobic site for binding of bis-ANS. The high affinity interaction was characterized by an equilibrium constant Kd of 0.10-0.26 microm and by a relatively high on rate constant kass = 2.0 x 10(4) m(-1) s(-1) and a slow off-rate with a dissociation rate constant kdiss = 1.2 x 10(-4) s(-1). The high affinity binding of bis-ANS did not influence interaction of LPL with heparin or with lipid/water interfaces and did not dissociate the active LPL dimer into monomers. Analysis of fragments of LPL after photoincorporation of bis-ANS indicated that the high affinity binding site was located in the middle part of the N-terminal folding domain. We propose that bis-ANS binds to an exposed hydrophobic area that is located close to the active site. This area may be the binding site for individual substrate molecules and also for apoCII.  相似文献   

12.
Trigger factor (TF) is the first chaperone to interact with nascent chains and facilitate their folding in bacteria. Escherichia coli TF is 432 residues in length and contains three domains with distinct structural and functional properties. The N-terminal domain of TF is important for ribosome binding, and the M-domain carries the PPIase activity. However, the function of the C-terminal domain remains unclear, and the residues or regions directly involved in substrate binding have not yet been identified. Here, a hydrophobic probe, bis-ANS, was used to characterize potential substrate-binding regions. Results showed that bis-ANS binds TF with a 1:1 stoichiometry and a K(d) of 16 microM, and it can be covalently incorporated into TF by UV-light irradiation. A single bis-ANS-labeled peptide was obtained by tryptic digestion and identified by MALDI-TOF mass spectrometry as Asn391-Lys392. In silico docking analysis identified a single potential binding site for bis-ANS on the TF molecule, which is adjacent to this dipeptide and lies in the pocket formed by the C-terminal arms. The bis-ANS-labeled TF completely lost the ability to assist GAPDH or lysozyme refolding and showed increased protection toward cleavage by alpha-chymotrypsin, suggesting blocking of hydrophobic residues. The C-terminal truncation mutant TF389 also showed no chaperone activity and could not bind bis-ANS. These results suggest that bis-ANS binding may mimic binding of a substrate peptide and that the C-terminal region of TF plays an important role in hydrophobic binding and chaperone function.  相似文献   

13.
FKBP38 is a regulator of the prosurvival protein Bcl-2, but in the absence of detailed structural insights, the molecular mechanism of the underlying interaction has remained unknown. Here, we report the contact regions between Bcl-2 and the catalytic domain of FKBP38 derived by heteronuclear NMR spectroscopy. The data reveal that a previously identified charge-sensitive loop near the putative active site of FKBP38 is mainly responsible for Bcl-2 binding. The corresponding binding epitope of Bcl-2 could be identified via a peptide library-based membrane assay. Site-directed mutagenesis of the key residues verified the contact sites of this electrostatic protein/protein interaction. The derived structure model of the complex between Bcl-2 and the FKBP38 catalytic domain features both electrostatic and hydrophobic intermolecular contacts and provides a rationale for the regulation of the FKBP38/Bcl-2 interaction by Ca(2+).  相似文献   

14.
Functional domains of the initiator protein DnaA of Escherichia coli have been defined. Domain 1, amino acids 1-86, is involved in oligomerization and in interaction with DnaB. Domain 2, aa 87-134, constitutes a flexible loop. Domain 3, aa 135-373, contains the binding site for ATP or ADP, the ATPase function, a second interaction site with DnaB, and is required for local DNA unwinding. Domain 4 is required and sufficient for specific binding to DNA. We show that there are three different types of cooperative interactions during the DNA binding of DnaA proteins from E. coli, Streptomyces lividans, and Thermus thermophilus: i) binding to distant binding sites; ii) binding to closely spaced binding sites; and iii) binding to non-canonical binding sites.  相似文献   

15.
The human C-type lectin-like molecule CLEC-2 is expressed on the surface of platelets and signaling through CLEC-2 causes platelet activation and aggregation. CLEC-2 is a receptor for the platelet-aggregating snake venom protein rhodocytin. It is also a newly identified co-receptor for human immunodeficiency virus type 1 (HIV-1). An endogenous ligand has not yet been identified. We have solved the crystal structure of the extracellular domain of CLEC-2 to 1.6-A resolution, and identified the key structural features involved in ligand binding. A semi-helical loop region and flanking residues dominate the surface that is available for ligand binding. The precise distribution of hydrophobic and electrostatic features in this loop will determine the nature of any endogenous ligand with which it can interact. Major ligand-induced conformational change in CLEC-2 is unlikely as its overall fold is compact and robust. However, ligand binding could induce a tilt of a 3-10 helical portion of the long loop region. Mutational analysis and surface plasmon resonance binding studies support these observations. This study provides a framework for understanding the effects of rhodocytin venom binding on CLEC-2 and for understanding the nature of likely endogenous ligands and will provide a basis for rational design of drugs to block ligand binding.  相似文献   

16.
Eye lens alpha-crystallin is a member of the small heat shock protein (sHSP) family and forms large multimeric structures. Earlier studies have shown that it can act like a molecular chaperone and form a stable complex with partially unfolded proteins. We have observed that prior binding of the hydrophobic protein melittin to alpha-crystallin diminishes its chaperone-like activity toward denaturing alcohol dehydrogenase, suggesting the presence of mutually exclusive sites for these proteins in alpha-crystallin. To investigate the mechanism of the interaction between alpha-crystallin and substrate proteins, we determined the melittin-binding sites in alpha-crystallin by cross-linking studies. Localization of melittin-binding sites in alpha-crystallin resulted in the identification of RTLGPFYPSR and FVIFLDVKHFSPEDLTVK of alphaA-crystallin and FSVNLDVK of alphaB-crystallin as the chaperone sites. Of these sites, FVIFLDVKHFSPEDLTVK and FSVNLDVK were identified earlier as 1,1'-bi(4-anilino) naphthalene-5,5'-disulfonic acid (bis-ANS)-binding hydrophobic sites. Here we also report the synthesis and characterization of the peptide, KFVIFLDVKHFSPEDLTVK, having the melittin as well as bis-ANS-binding sequence of alphaA-crystallin. We show that this peptide has characteristics similar to that of alphaA-crystallin by in vitro thermal aggregation assay, gel filtration study, CD spectroscopy, and bis-ANS interaction studies. The peptide sequence corresponds to the beta3 and beta4 region present in the alpha-crystallin domain of sHSP 16.5. We hypothesize that the alpha-crystallin domain in other sHSPs may have a similar function and would likely possess the anti-aggregation property even when separated from the native protein.  相似文献   

17.
Reperfusion of ischemic tissue induces significant tissue damage in multiple conditions, including myocardial infarctions, stroke, and transplantation. Although not as common, the mortality rate of mesenteric ischemia/reperfusion (IR) remains >70%. Although complement and naturally occurring Abs are known to mediate significant damage during IR, the target Ags are intracellular molecules. We investigated the role of the serum protein, β2-glycoprotein I as an initiating Ag for Ab recognition and β2-glycoprotein I (β2-GPI) peptides as a therapeutic for mesenteric IR. The time course of β2-GPI binding to the tissue indicated binding and complement activation within 15 min postreperfusion. Treatment of wild-type mice with peptides corresponding to the lipid binding domain V of β2-GPI blocked intestinal injury and inflammation, including cellular influx and cytokine and eicosanoid production. The optimal therapeutic peptide (peptide 296) contained the lysine-rich region of domain V. In addition, damage and most inflammation were also blocked by peptide 305, which overlaps with peptide 296 but does not contain the lysine-rich, phospholipid-binding region. Importantly, peptide 296 retained efficacy after replacement of cysteine residues with serine. In addition, infusion of wild-type serum containing reduced levels of anti-β2-GPI Abs into Rag-1(-/-) mice prevented IR-induced intestinal damage and inflammation. Taken together, these data suggest that the serum protein β2-GPI initiates the IR-induced intestinal damage and inflammatory response and as such is a critical therapeutic target for IR-induced damage and inflammation.  相似文献   

18.
Mutation of all nonessential cysteine residues to serines in rhodanese turns the enzyme into a form (C3S) that is fully active but less stable than wild type (WT). bis-ANS binding studies have shown that C3S has more hydrophobic exposure than WT, although both have similar secondary structures suggesting the flexibility of its structure. Activity of C3S falls once it binds bis-ANS, and covalent binding of bis-ANS to C3S is induced by light. bis-ANS binds to C3S in its C-terminal domain as is shown by gel electophoresis and proteolysis. bis-ANS binding makes the C-terminal domain more susceptible to trypsin cleavage.  相似文献   

19.
Hydrophobic interaction chromatography is employed to determine if calmodulin might associate with its target enzymes such as cyclic nucleotide phosphodiesterase and calcineurin through its Ca2+-induced hydrophobic binding region. The majority of protein in a bovine brain extract that binds to a calmodulin-Sepharose affinity column also is observed to bind in a metal ion-independent manner to phenyl-Sepharose through hydrophobic interactions. Cyclic nucleotide phosphodiesterase activity that is bound to phenyl-Sepharose can be resolved into two activity peaks; one peak of activity is eluted with low ionic strength buffer, while the second peak eluted with an ethylene glycol gradient. Calcineurin bound tightly to the phenyl-Sepharose column and could only be eluted with 8 M urea. Increasing ethylene glycol concentrations in the reaction mixture selectively inhibited the ability of calmodulin to stimulate phosphodiesterase activity, suggesting that hydrophobic interaction is required for activation. Comparison of the proteins which are bound to and eluted from phenyl- and calmodulin-Sepharose affinity columns indicates that chromatography involving calmodulin-Sepharose resembles hydrophobic interaction chromatography with charged ligands. In this type of interaction, hydrophobic binding either is reinforced by electrostatic attractions or opposed by electrostatic repulsions to create a degree of specificity in the binding of calmodulin to certain proteins with accessible hydrophobic regions.  相似文献   

20.
Many of the physiological functions of von Willebrand Factor (VWF), including its binding interaction with blood platelets, are regulated by the magnitude of applied fluid/hydrodynamic stress. We applied two complementary strategies to study the effect of fluid forces on the solution structure of VWF. First, small-angle neutron scattering was used to measure protein conformation changes in response to laminar shear rates (G) up to 3000/s. Here, purified VWF was sheared in a quartz Couette cell and protein conformation was measured in real time over length scales from 2-140 nm. Second, changes in VWF structure up to 9600/s were quantified by measuring the binding of a fluorescent probe 1,1′-bis(anilino)-4-,4′-bis(naphtalene)-8,8′-disulfonate (bis-ANS) to hydrophobic pockets exposed in the sheared protein. Small angle neutron scattering studies, coupled with quantitative modeling, showed that VWF undergoes structural changes at G < 3000/s. These changes were most prominent at length scales <10 nm (scattering vector (q) range >0.6/nm). A mathematical model attributes these changes to the rearrangement of domain level features within the globular section of the protein. Studies with bis-ANS demonstrated marked increase in bis-ANS binding at G > 2300/s. Together, the data suggest that local rearrangements at the domain level may precede changes at larger-length scales that accompany exposure of protein hydrophobic pockets. Changes in VWF conformation reported here likely regulate protein function in response to fluid shear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号