首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retroviral envelope glycoprotein gp70 is present in the sera of immunologically normal and autoimmune-prone strains of mice. However, only lupus-prone mice spontaneously develop gp70-anti-gp70 immune complexes (gp70IC), and these have been implicated in the development of nephritis. We investigated the genetic factors that affect the production of both free serum gp70 and gp70IC in the lupus-prone BXSB mouse strain by analyzing (BXSB x (C57BL/10 x BXSB)F(1))- and (C57BL/10 x (C57BL/10 x BXSB)F(1))-backcrossed male mice. Production of gp70 mapped to a single major locus located on chromosome 13 (Bxs6) with a maximum log likelihood of the odds of 36.7 (p = 1.6 x 10(-38)). The level of gp70IC was highly dependent on Bxs6-related gp70 production, and high titer autoantibody production only occurred when serum gp70 levels were greater than a threshold value of approximately 4.0 microg/ml. The subdivision of the (BXSB x (C57BL/10 x BXSB)F(1))-backcrossed mice into those homozygous or heterozygous for Bxs6 enabled a remarkable association to be observed between high levels of gp70IC and severe nephritis in the Bxs6 homozygote population. A further mapping study in these two subgroups identified a previously unrecognized interval associated with the production of autoantibodies.  相似文献   

2.
High levels of the retroviral envelope protein gp70 and gp70 immune complexes have been linked to a single locus on chromosome 13 (Bxs6) in the BXSB model, to which linkage of nephritis was also seen. Congenic lines containing the BXSB Bxs6 interval on a non-autoimmune C57BL/10 background were bred in the presence or absence of the BXSB Y chromosome autoimmune accelerator gene (Yaa), which accelerates disease in male mice. In these mice, we have shown that Bxs6 is sufficient to cause high-level expression of gp70 and the production of gp70 autoantibodies, independently of Yaa, with gp70 immune complex levels enhanced by Yaa. In the presence of Yaa, Bxs6 also causes mild nephritis, and interestingly the sporadic production of high levels of anti-DNA Abs in some mice. Fine mapping using rare recombinant mice suggested that Bxs6 lies between 59.7 and 74.8 megabases (Mb), although the interval of 0.6 Mb between 73.6 and 78.6 Mb on chromosome 13 cannot be excluded in this study.  相似文献   

3.
To dissect the individual effects of the four non-MHC, autosomal loci (Bxs1 to Bxs4) that contribute to SLE susceptibility in BXSB mice, we generated congenic lines from chromosome 1 on a C57BL/10.Y(BXSB) (B10.Yaa) background for the intervals (values in megabases (Mb)) Bxs1 (46.3-89.2 Mb), Bxs1/4 (20.0-65.9 Mb), Bxs1/2 (64.4-159.0 Mb), and Bxs2/3 (105.4-189.0 Mb). Glomerulonephritis, qualitatively similar to that seen in the parental BXSB strain, developed in three of these congenic strains. Early onset, severe disease was observed in B10.Yaa.BXSB-Bxs2/3 congenic mice and caused 50% mortality by 12 mo. In B10.Yaa.BXSB-Bxs1/4 mice disease progressed more slowly, resulting in 13% mortality at 12 mo. The progression of renal disease in both of these strains was correlated with the level of anti-dsDNA Abs. B10.Yaa.BXSB-Bxs1 mice, despite their genetic similarity to B10.Yaa.BXSB-Bxs1/4 mice, developed a low-grade glomerulonephritis in the absence of anti-dsDNA Abs. Thus, Bxs4 directed an increase in titer and spectrum of autoantibodies, whereas Bxs1 promoted the development of nephritis. The Bxs2 interval was linked to the production of anti-dsDNA Abs without concomitant glomerulonephritis. In contrast, the Bxs3 interval was sufficient to generate classic lupus nephritis in a nonautoimmune-prone strain. Immune phenotype differed between controls and congenics with a significant increase in B220(+) cells in BXSB and B10.Yaa.BXSB-Bxs2/3, and an increase in CD4 to CD8 ratio in both BXSB and B10.Yaa.BXSB-Bxs1/4. Disease in the Bxs3 mice was delayed in comparison to the BXSB parental strain, emphasizing the necessity for multiple interactions in the production of the full BXSB phenotype.  相似文献   

4.
Administration of recombinant murine tumor necrosis factor (TNF) to mice results in lethal shock, characterized by hypotension, hypothermia, and dramatic induction of cytokines released in the circulation, such as interleukin-6 (IL-6). The sensitivity of mice to the effects of murine TNF varies from strain to strain. DBA/2 mice were found to be considerably more resistant to TNF than C57BL/6 mice. The resistance proved to be dominant since (C57BL/6 x DBA/2)F1 mice were also resistant. Using BXD recombinant inbred mice and a dose of TNF lethal for C57BL/6 but not for DBA/2 mice, we found that the resistance to TNF links to loci coding for corticosteroid-binding globulin (Cbg), alpha1-protease inhibitor (Spi1), contrapsin (Spi2) and the contrapsin-regulating gene Spi2r that form a gene cluster on chromosome 12. Quantitative trait-loci analysis of TNF-induced induction of IL-6 and of hypothermia also points to the importance of this locus (P < 0.0002 and P = 0.017, respectively), more particularly the Cbg and Spi2 loci, in the resistance to TNF. We propose to name the locus "TNF protection locus." The data suggest that endogenous protease inhibitors and/or glucocorticoids play a significant role in the attenuation of TNF-induced lethal shock. This study also demonstrates that loci affecting important biological responses can be identified with very high resolution using recombinant inbred mice.  相似文献   

5.
In lupus erythematosus-prone mice, including the BXSB, NZW and NZB strains, telomeric regions of chromosome 1 (Chr.1) contain major glomerulonephritis susceptibility loci such as Bxs3, Sle1, and Nba2. To assess whether strain MRL, a model for lupus erythematosus, had glomerulonephritis susceptibility loci on Chr.1, we created B6.MRLc1(82-100) congenic mice carrying MRL/MpJ Chr.1 (82-100 cM) based on the C57BL/6 background and investigated renal pathology. From 6 months of age, B6.MRLc1 (82-100) showed the onset of diseases such as splenomegaly due to proliferation of CD3- or B220-positive cells, glomerular damage, and an increased serum anti-dsDNA antibody concentration, and these were earlier and severer in females. The score for glomerular damage was higher in B6.MRLc1(82-100) mice over 12 months old than in C57BL/6 or even in wild-type MRL/MpJ. Immune-complex depositions were demonstrated on glomerular basement membrane in B6.MRLc1(82-100) by immunohistochemistry and electron microscopy. For the percentage of IgG1-positive glomeruli, B6.MRLc1 (82-100) had significantly higher values than C57BL/6. In evaluations of clinical parameters, serum levels of blood urea nitrogen and the anti-dsDNA antibody in B6.MRLc1(82-100) were significantly higher than those in C57BL/6. In conclusion, B6.MRLc1(82-100) clearly developed autoimmune-mediated glomerulonephritis, and we demonstrated that MRL Chr.1 contained a novel glomerulonephritis susceptibility locus. We named this locus Mag (MRL autoimmune glomerulonephritis) and it provided new insights into the genetic basis and pathogenesis of lupus nephritis.  相似文献   

6.
Previous work has demonstrated linkage between Ly-6, H-30, and a locus, Ril-1, that affects susceptibility to radiation-induced leukemia. Results of preliminary linkage analyses suggested further that the cluster might be linked to Ly-11 on the proximal portion of mouse chromosome 2. Using molecular probes to examine somatic cell lines and recombinant inbred and congenic strains of mice, we have re-evaluated these linkage relationships. A cloned genomic DNA fragment derived from a retroviral site has been used to define a novel locus, Pol-5, that is tightly linked to both H-30 and Ril-1 as shown by analysis of the B6.C-H-30 c congenic mouse strain. Following the segregation of the Pol-5 mouse-specific DNA fragment in a series of somatic cell hybrids carrying various combinations of mouse chromosomes on a rat or Chinese hamster background mapped Pol-5 to mouse chromosome 15. During the course of these studies, restriction fragment length polymorphisms were defined associated with several loci, including Pol-5, Ly-6, Sis, Ins-3, Krt-1, Int-1, and Gdc-1. Three of these loci, Sis, Int-1, and Gdc-1, have been previously mapped to chromosome 15 by others using somatic cell hybrids or isoenzyme analyses. Following the inheritance of these eight loci in recombinant inbred strains of mice allowed the definition of a linkage group on the chromosome with the order Ly-6-Ril-1--Sis--H-30--Pol-5--Ins-3--Krt-1--Int-1--Gdc-1. Analyses of alleles inherited as passengers in B6.C-H-30 c, C3H.B-Ly-6 b, and C57BL/6By-Eh/+ congenic mouse strains and in situ hybridization experiments support the above gene order and indicate further that the cluster is located on distal chromosome 15, with Ly-6 and Sis near Eh.Abbreviations A agouti - Abl cellular homolog of the Abelson leukemia virus oncogene - Ada adenosine deaminase - Ak-1 adenylate kinase-1 - AXB A/J × C57BL/6J recombinant inbred strain - B2m beta-2 microglobulin - BXA C57BL/6J × A/J recombinant inbred strain - BXD C57BL/6J × DBA/2J recombinant inbred strain - BXH C57BL/6J × C3H/HeJ recombinant inbred strain - CXB BALB/cBy × C57BL/6By recombinant inbred strain - DNA deoxyribonucleic acid - Eh hairy ears - Fpgs folypolyglutamyl synthetase - FXI fractionated x-irradiation - Gdc-1 glycerol phosphate dehydrogenase-1 - Il2r IL-2 receptor - Ins-3 a novel insulinlike gene - Int-1 mammary tumor integration site-1 - Itp inosine triphosphatase - Krt-1 the locus designated here includes a cluster of at least three keratin genes - LTR long terminal repeat - Ly lymphocyte - Lv-6 lymphocyte antigen-6 - Ly-11 lymphocyte antigen-11 - MIH minor histocompatibility - Myc cellular homolog of the Abelson leukemia virus oncogene; pa, pallid; - Pol-5 locus encoding retroviral polymerase-5 - RFLP restriction fragment length polymorphism - RI recombinant inbred mouse strains - Ril-1 radiation-induced leukemia susceptibility-1 locus - SDP strain distribution pattern - Sis cellular homolog of the simian sarcoma virus oncogene - SFFV spleen focus-forming virus - Tpi-1 triosephosphate isomerase-1 - Ve velvet  相似文献   

7.
The identification and mode of action of genetic loci that program gene expression during development are important for understanding differentiation in higher organisms. Previous work from this laboratory has identified two patterns for the postnatal development of liver beta-galactosidase among inbred mouse strains: type I, where activity levels remain constant after about 30 days of age, is found in strains DBA/2J, CBA/J, and BALB/cJ, among others; type II, where activity levels increase between 25 and 50 days of age to reach a new adult level, is found in strain C57BL/6J and related strains. It has been shown that the type I vs. type II developmental difference between strains C57BL/6J and DBA/2J is due to variation at a locus, Bgl-t, that maps with the beta-galactosidase complex, [Bgl], on chromosome 9. In the present study, we have confirmed the existence of Bgl-t as a temporal locus within [Bgl] by analysis of both a congenic strain carrying the beta-galactosidase complex of strain CBA/J in the C57BL/6J genetic background and a cross of strains CBA/J and C57BL/6J. The existence of additional temporal loci for beta-galactosidase that segregate independently of the structural gene and participate in determination of the type I vs. type II difference was revealed by analysis of: (1) a congenic strain containing the beta-galactosidase complex of strain BALB/cJ in the C57BL/10Sn background; (2) recombinant inbred lines derived from progenitor strains C57BL/6ByJ and BALB/cByJ; and (3) a genetic cross between strains C57BL/6ByJ and BALB/cByJ. Thus, for these pairs of strains, the type I vs. type II developmental difference is due to variation at a temporal locus (or loci) unlinked to the enzyme structural gene, and not at Bgl-t. These facts, together with information gathered from an examination of the distribution of beta-galactosidase phenotypes among over 100 inbred strains (Breen, Lusis and Paigen 1977), have led us to conclude that the postnatal developmental pattern for liver beta-galactosidase is determined by a set of interacting temporal genes. One of these, Bgl-t, is located within [Bgl], and one or more are separable from [Bgl] by recombination. A possible mode of interaction among the temporal and instructural loci is suggested.  相似文献   

8.
Natural resistance of mice to lethal ifections of Rickettsia tsutsugamushi, strain Gilliam, is controlled by a single, autosomal, dominant gene, which we have designated Ric, with r and s representing the resistant nd susceptible alleles, respectively. Using three sets of recombinant inbred mouse strains (BXD, BXH, and BXJ), the Ric locus was mapped to Chromosome 5 closely linked to the retinal degeneration (rd) locus. This linkage was confirmed by a backcross analysis. Based on the RI strains and the C57BL/6Ty-le congenic strain (the only proven Ric-rd cross-over), we estimate the recombination frequency between Ric and rd to be 0.015. Three presumptive Ric-rd recombinants detected among 93 backcross mice may represent caes of incomplete penetrance of the resistance allele rather than recombination. Analyis of th C57BL/6JTy-le congenic strain indicates that Ric is proximal to rd on Chromosome 5. If so, the correct gene order is Pgm-1-W-Ric-rd-Gus.  相似文献   

9.
Human autoimmune diseases thought to arise from the combined effects of multiple susceptibility genes include systemic lupus erythematosus (SLE) and autoimmune diabetes. Well-characterised polygenic mouse models closely resembling each of these diseases exist, and genetic evidence links receptors for the Fc portion of immunoglobulin G (FcR) with their pathogenesis in mice and humans [1] [2] [3]. FcRs may be activatory or inhibitory and regulate a variety of immune and inflammatory processes [4] [5]. FcgammaRII (CD32) negatively regulates activation of cells including B cells and macrophages [6]. FcgammaRII-deficient mice are prone to immune-mediated disease [7] [8] [9]. The gene encoding FcgammaRII, Fcgr2, is contained in genetic susceptibility intervals in mouse models of SLE such as the New Zealand Black (NZB) contribution to the (NZB x New Zealand White (NZW)) F1 strain [1] [10] [11] and the BXSB strain [12], and in human SLE [1] [2] [3]. We therefore sequenced Fcgr2 and identified a haplotype defined by deletions in the Fcgr2 promoter region that is present in major SLE-prone mouse strains (NZB, BXSB, SB/Le, MRL, 129 [13]) and non-obese diabetic (NOD) mice but absent in control strains (BALB/c, C57BL/6, DBA/2, C57BL/10) and NZW mice. The autoimmune haplotype was associated with reduced cell-surface expression of FcgammaRII on macrophages and activated B cells and with hyperactive macrophages resembling those of FcgammaRII-deficient mice, and is therefore likely to play an important role in the pathogenesis of SLE and possibly diabetes.  相似文献   

10.
The VK1GAC light chain represents the dominant V kappa structure employed in the antibody response of A/J mice to streptococcal group A carbohydrate ( GAC ). Two anti-idiotypic antisera, anti- Id5 and anti- Id20 , with specificity for the VK1GAC light chain were used to examine anti- GAC antibody responses in a series of inbred mouse strains that differ at the heavy chain constant region ( IgCH ) allotype locus. Both idiotypes were expressed in normal and immune sera from mice of most IgCH allotypes, except IgCHb (C57BL/6J) and IgCHf (CE/J). C57BL/6J mice expressed Id5 , but not Id20 , whereas CE/J mice did not express either idiotype. Testing of recombinant inbred strains between BALB/c and C57BL/6 indicated that the pattern of idiotype expression did not correlate with IgCH allotype. The C X B recombinants expressed all three idiotype patterns that were observed in the panel of inbred strains. Testing of allotype congenic mice between BALB/c and C57BL/6 showed that CB.20 and BC.8 mice were Id20 -, whereas BAB-14 mice were Id20 +, indicating that both VH and background (V kappa or regulatory) loci must be derived from BALB/c to obtain Id20 expression. The difference in the frequency of idiotype expression observed between BALB/c and BAB-14 mice indicates that the IgCH locus may exert a quantitative influence on the expression of this light chain. To examine the Id20 -, Id5 + antibodies of C57BL/6 mice, anti- GAC hybridomas were prepared. Of 16 C57BL/6-derived anti- GAC monoclonal antibodies, six were reactive with anti- Id5 and not with anti- Id20 . Isoelectric focusing of the purified kappa light chains from three of these antibodies revealed two distinct spectrotypes that co-migrated with the two known VK1GAC spectrotypes observed with A/J anti- GAC light chains. Idiotypic analysis of in vitro recombinants between the heavy and light chains of A/J and C57BL/6 monoclonal antibodies demonstrated that the C57BL/6 light chains were idiotypically similar to A/J light chains when they were free in solution or paired with A/J heavy chains. These results demonstrate that C57BL/6 mice can express a light chain that is very similar, if not identical, to the VK1GAC light chain, although the light chain is expressed in lower frequency and is paired with a distinct VH structure, which can mask expression of one of the VK1GAC idiotypes. These effects on V kappa expression map to at least three genetic loci: VH, CH, and an unlinked locus.  相似文献   

11.
Non-MHC loci have been shown to play an important role in the development and regulation of graft-vs-host disease (GVHD). In the murine model of GVHD under study, injection of C57BL/6 spleen cells into unirradiated (C57BL/6 x DBA/2)F1 hybrid recipient mice results in an acute form of GVHD characterized by CTL, suppressor cells, and runting. In contrast, injection of DBA/2 spleen cells into the same recipients results in a chronic form of GVHD that is characterized by a lack of CTL and hyperproduction of Ig and autoantibodies. After preliminary studies with the use of congenic mice showed that non-MHC loci were controlling GVHD responses in this model, genetic analysis of GVHD response of BXD recombinant inbred strains and (B10.D2 x DBA/2) X DBA/2 BC mice identified a single locus, Gvh, on chromosome 7 that controls whether acute or chronic GVHD results from injection of parental lymphocytes into unirradiated (C57BL/6 x DBA/2)F1 recipient mice.  相似文献   

12.
昆明小鼠4个可能近交系的基因分型验证   总被引:1,自引:0,他引:1  
在我国,昆明小鼠作为一种实验动物广泛应用于药理和遗传学相关的研究领域。但由于昆明小鼠属于远交群,而且不同地区的种群间已经出现了严重分化,缺乏具有显著特征的近交系,这使得它在生物学上的应用受到了很大的限制。研究人员已经以昆明小鼠为背景培育出了几个可能的近交系,但由于缺乏可靠的遗传检测,至今未得到广泛的认可和应用。文章收集昆明小鼠的4个已经60代以上兄妹交配繁殖的可能近交系,并以两个标准近交系BALB/c和C57BL/6为参照,利用30个微卫星标记对每个品系的5只小鼠进行了微卫星基因分型,进而分析其遗传纯度。结果发现,品系A1和品系N4在本研究所用的30个位点均呈纯合状态;而T2和N2均在D15Mit16位点呈杂合状态。本研究第一次为我国昆明小鼠近交系的遗传学纯度提供了可靠的分子水平证据。今后应当加强昆明小鼠近交系的标准化,以扩大其在遗传学方面的应用。  相似文献   

13.
Both sexes of the F1 hybrids between SB/Le and NZW mice developed a spontaneous lupus-like disease. Their disease is essentially identical in time course and nature with autoimmune responses that are seen in the F1 hybrids between BXSB and NZW mice. The presence of abnormal Y chromosomes in the SB/Le strain was proved by the finding that the accelerated disease occurred in the F1 hybrid males only when the male parent was SB/Le but not NZW. The acceleration of disease in male F1 hybrids with abnormal Y chromosome was significantly associated with the enhanced formation of gp70 IC but not anti-DNA antibodies. These results indicate that all or almost all of the genetic abnormalities expressed in the BXSB strain are contributed by the SB/Le strain, and the Y chromosome-associated factor enhances the autoimmune response to serum gp70 antigen more markedly than to DNA antigens.  相似文献   

14.
Among a selected group of mouse strains susceptible to dietary obesity, those with an enhanced capacity for Ucp1 and brown adipocyte induction in white fat preferentially lost body weight following adrenergic stimulation. Based on the generality of this mechanism for reducing obesity, a genetic analysis was initiated to identify genes that control brown adipocyte induction in white fat depots in mice. Quantitative trait locus (QTL) analysis was performed using the variations of retroperitoneal fat Ucp1 mRNA expression in progeny of genetic crosses between the A/J and C57BL/6J parental strains and selected AXB recombinant inbred strains. Three A/J-derived loci on chromosomes 2, 3, and 8 and one C57BL/6J locus on chromosome 19 were linked to Ucp1 induction in retroperitoneal fat. Although A/J-derived alleles seemed to contribute to elevated Ucp1 expression, the C57BL/6J allele on chromosome 19 increased Ucp1 mRNA to levels higher than parental values. Thus, novel patterns of C57BL/6J and A/J recombinant genotypes among the four mapped loci resulted in a transgressive variation of Ucp1 phenotypes. Although the extent of the interchromosomal interactions have not been fully explored, strong synergistic interactions occur between a C57BL/6J allele on chromosome 19 and an A/J allele on chromosome 8. In addition to selective synergistic interactions between loci, variations in recessive and dominant effects also contribute to the final levels of Ucp1 expression.  相似文献   

15.
Genetics of two traits, survival and brain cyst number after peroral Toxoplasma gondii infection, were studied by using recombinant inbred strains of mice derived from resistant A/J (A) and susceptible C57BL/6J (B) progenitors, F1 progeny of crosses between A/J and C57BL/6J mice, and congenic mice (B10 background). Analysis of strain distribution pattern of survival of A x B/B x A recombinant mice indicated that survival is regulated by a minimum of five genes. One of these genes appears to be linked to the H-2 complex and another is related to an as yet unmapped gene controlling resistance to Ectromelia virus. Associations of defined traits with resistance or susceptibility to Toxoplasma cyst formation were also analyzed. Cyst number is regulated by a locus on chromosome 17 within 0 to 4 centimorgans of the H-2 complex (p = 0.001). Mice with the H-2a haplotype are resistant and those with the H-2b haplotype are susceptible. This analysis also indicated that the Bcg locus on chromosome 1 may effect cyst number (map distance = 12 centimorgans, p = 0.05). Resistance to cyst formation is a dominant trait. To analyze relative roles of H-2 and Bcg loci on cyst numbers, C57BL10 (B10)-derived congenic strains of mice with known H-2 and Bcg type were studied. These studies indicated that the H-2 complex locus has the primary effect on cyst number.  相似文献   

16.
The Ah locus encodes a cytosolic receptor which controls the induction of enzymes that metabolize drugs, chemical carcinogens, and other environmental pollutants. B6NXC3N recombinant inbred lines have been developed from the progenitors C57BL/6N and C3H/HeN inbred mouse strains. Ah phenotyping at each generation has resulted in the establishment of some lines containing high levels of the high-affinity Ah receptor; other lines, very low levels. A genetic model involving two unlinked loci is offered to explain the distribution of Ah receptor levels among (C57BL/6N) (C3H/HeN)F2 individuals. Between generations 7 and 13, individual females and males from the B6NXC3N recombinant inbred lines were crossed with DBA/2N males and females. Presence of high levels of the high-affinity Ah receptor in both female and male B6NXC3N mice was found to be associated with greater fertility, fitness, and longer life span. The data suggest that these parameters are correlated with the Ah locus or a closely segregating gene.  相似文献   

17.
C57BL/6N inbred mice are used as the genetic background for producing knockout mice in large-scale projects worldwide; however, the genetic divergence among C57BL/6N-derived substrains has not been verified. Here, we identified novel single nucleotide polymorphisms (SNPs) specific to the C57BL/6NJ strain and selected useful SNPs for the genetic monitoring of C57BL/6N-derived substrains. Informative SNPs were selected from the public SNP database at the Wellcome Trust Sanger Institute by comparing sequence data from C57BL/6NJ and C57BL/6J mice. A total of 1,361 candidate SNPs from the SNP database could distinguish the C57BL/6NJ strain from 12 other inbred strains. We confirmed 277 C57BL/6NJ-specific SNPs including 10 nonsynonymous SNPs by direct sequencing, and selected 100 useful SNPs that cover all of the chromosomes except Y. Genotyping of 11 C57BL/6N-derived substrains at these 100 SNP loci demonstrated genetic differences among the substrains. This information will be useful for accurate genetic monitoring of mouse strains with a C57BL/6N-derived background.  相似文献   

18.
Calcification occurs frequently in the development of atherosclerotic lesions, and studies in mice have indicated a genetic contribution. We now show that one genetic factor contributing to aortic calcification is the Dyscalc locus, previously shown to contribute to myocardial calcification. Thus, the Dyscalc locus, on proximal mouse Chromosome (Chr) 7, segregated with vascular calcification in a large cross between susceptible strain DBA/2J and resistant strain C57BL/6J. Further evidence was observed by analysis of recombinant inbred strains derived from various susceptible and resistant parental strains. Myocardial and vascular calcifications are importantly influenced by multiple modifier loci as well as the Dyscalc gene, making fine mapping of Dyscalc difficult. In order to allow more detailed genetic and biochemical characterization of Dyscalc, we have identified congenic strains containing the Dyscalc locus from resistant strain C57BL/10 on the background of susceptible strain C3H/DiSnA. The congenic strains exhibit little or no myocardial or vascular calcification, unlike the background HcB C3H strain, and the calcification segregated as a Mendelian factor, allowing finer mapping of Dyscalc.  相似文献   

19.
We have defined 40 endogenous xenotropic virus (Xmv) loci from several common inbred strains of mice by examining provirus-cell DNA junction fragments in recombinant inbred mice. Some inbred strains carried unique proviruses, but most Xmv loci were present in several strains, indicating that many Xmv integration events preexisted modern inbreeding. It was also clear that most Xmv junction fragment variation between inbred strains resulted from independent integration events and not modification or restriction site polymorphism following integration. Chromosomal assignments were determined for 32 Xmv loci by comparing their recombinant inbred strain distribution patterns to those of known genetic markers. The Xmv loci were generally dispersed throughout the genome, but several chromosomal regions contained more than one provirus. Furthermore, several close genetic associations with cellular genes were discovered. Four Xmv loci were closely linked to Fv-1b, a dominant viral resistance gene present in C57BL/6J, BALB/cJ, A/J, and several other strains. Xmv-28 was closely linked to rd (retinal degeneration), and Xmv-10 was closely linked to a (non-agouti), both of which are old mutations as inferred from their broad distribution in mice. We suggest that Xmv integration contributed to genetic diversity in the past and that much of this diversity exists today in common laboratory strains.  相似文献   

20.
A common polygenic basis for quinine and PROP avoidance in mice   总被引:3,自引:2,他引:1  
Harder  DB; Whitney  G 《Chemical senses》1998,23(3):327-332
Inbred strains of mice (Mus musculus) differ greatly in ability to taste various bitter compounds. For some compounds, the differences result from allelic variation at a single locus. However, segregation patterns incompatible with monogenic inheritance have been found for quinine avoidance. The Soa bitter sensitivity locus exerts some influence on this phenotype, but an unknown number of other loci also contribute. Relative avoidance patterns for quinine sulfate in panels of naive inbred strains resembled avoidance patterns for 6-n-propyl-2- thiouracil (PROP), suggesting a common genetic basis. In particular, C57BL/6J mice strongly avoided both 0.1 mM quinine sulfate and 1 mM PROP in two-bottle preference tests, whereas C3H/HeJ mice were indifferent to both. Therefore, 12 BXH/Ty recombinant inbred strains, derived from these strains, were tested with both solutions to begin identification of the unknown bitter loci. Naive mice were tested for four consecutive days with each compound (order counterbalanced). Some BXH/Ty strain means resembled those of the parent strains, but others were intermediate. This indicated recombination among loci affecting avoidance, and therefore polygenic inheritance. The strain means were highly correlated across compounds (r = 0.98), suggesting that the same polygenes controlled both phenotypes. The BXH/Ty means for both compounds were then compared with the strain genotypes at 212 chromosome position markers distributed throughout the genome. Eight markers on five chromosomes (3, 6, 7, 8 and 9) yielded significant correlations. Six of the markers were correlated with both phenotypes, again suggesting common polygenic inheritance. The marker with the highest correlation was Prp, tightly linked to Soa on chromosome 6. The correlated marker regions likely contain quantitative trait loci affecting bitter avoidance. The phenotypic similarity of PROP to quinine, rather than to phenylthiourea, apparently stemming from a common polygenic basis, indicates a difference between mice and humans in gustatory organization related to bitters.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号