首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 280 毫秒
1.
This review outlines the steps for obtaining relative constants for drugs from footprinting data. After correcting the autoradiographic spot intensities for differing amounts of radioactive DNA loaded into the lanes of a sequencing gel, footprinting plots, showing individual spot intensities as a function of drug concentration, are constructed. The initial relative slopes of footprinting plots are proportional to the binding constant of the drug for its DNA sites. Slopes of plots outside the drug binding sites can be used to identify locations of altered DNA structure. It illustrates the power of quantitative footprinting analysis by analyzing the binding of the antiviral agent netrospin to a 139-base pair restriction fragment in the presence of the antitumor agent actinomycin D. While two netrospin binding regions are unaffected by actinomycin D a third region experiences enhanced binding in the presence of the antitumor agent.  相似文献   

2.
Abstract

The results of a series of quantitative footprinting experiments of the netropsin-DNA interaction as studied using two different DNA cleaving probes, the enzyme DNase I and a cationic manganese porphyrin complex, are described. Plots of the relative change in oligonucleotide concentration as a function of drug concentration, covering ~ 110 base pairs of a DNA restriction fragment, revealed netropsin induced changes in the cleavage rates of both probes. These appeared as inhibitions for the binding sites, enhancements where no binding took place, and enhancement/inhibitions for the weak binding sites. Determination of the concentration of drug necessary to reduce the amount of a particular oligomer to half of its initial value allowed a ranking of the affinities of the various binding sites on the fragment. In addition to uncovering the location of a number of overlapping netropsin binding sites, the data allowed additional insight on the manner in which both probes alter their DNA cleavage rates in the drug-footprinting experiment.  相似文献   

3.
Quantitative footprinting analysis. Binding to a single site   总被引:3,自引:0,他引:3  
The theory for measuring ligand binding constants from footprinting autoradiographic data associated with a single binding site is derived. If the ligand and DNA cleavage agent compete for a common site, the spot intensities are not proportional to the amount of DNA not blocked by ligand. The analysis of a single site is experimentally illustrated by using results for the anticancer drug actinomycin D interacting with the duplex d(TAGCGCTA)2 as probed with the hydrolytic enzyme DNase I.  相似文献   

4.
Quantitative footprinting analysis of the netropsin-DNA interaction   总被引:2,自引:0,他引:2  
The results of a series of quantitative footprinting experiments of the netropsin-DNA interaction as studied using two different DNA cleaving probes, the enzyme DNase I and a cationic manganese porphyrin complex, are described. Plots of the relative change in oligonucleotide concentration as a function of drug concentration, covering approximately 110 base pairs of a DNA restriction fragment, revealed netropsin induced changes in the cleavage rates of both probes. These appeared as inhibitions for the binding sites, enhancements where no binding took place, and enhancement/inhibitions for the weak binding sites. Determination of the concentration of drug necessary to reduce the amount of a particular oligomer to half of its initial value allowed a ranking of the affinities of the various binding sites on the fragment. In addition to uncovering the location of a number of overlapping netropsin binding sites, the data allowed additional insight on the manner in which both probes alter their DNA cleavage rates in the drug-footprinting experiment.  相似文献   

5.
E L Fish  M J Lane  J N Vournakis 《Biochemistry》1988,27(16):6026-6032
A new method for determining the equilibrium binding constant of antitumor drugs to specific DNA sequences by quantitative DNase I footprinting is presented. The use of a short synthetic DNA oligomer to define a homogeneous population of DNA binding sites enables the calculation of the free drug concentration and the fraction of DNA sites complexed with drug in solution and is described for the first time. Since a 1:1 stoichiometry is observed for each drug-oligomer DNA complex, it becomes possible to calculate equilibrium binding constants in solution. By use of this technique, the binding affinities of the nonintercalating drugs netropsin and distamycin to the synthetic oligonucleotide d(GGTATACC)2 are determined to be Ka (25 degrees C) = 1.0 X 10(5) and 2.0 X 10(5) M-1, respectively. Quantitation of the temperature dependence associated with complex formation results in a determination of standard enthalpies of -3.75 and -8.48 kcal mol-1 for the binding of netropsin and distamycin, respectively. Calculation of other thermodynamic parameters are found to be in agreement with previous studies and indicate that the DNA binding process for these compounds is predominantly enthalpy driven. This method of quantitative DNase I footprinting is demonstrated to be a useful technique for the measurement of drug affinities to specific binding sites on DNA oligomers which are designed and synthesized expressly for this purpose. Applications of the technique to the determination of drug binding affinities at specific sites within native DNA sequences are discussed.  相似文献   

6.
Determination of netropsin-DNA binding constants from footprinting data   总被引:9,自引:0,他引:9  
A theory for deriving drug-DNA site binding constants from footprinting data is presented. Plots of oligonucleotide concentration, as a function of drug concentration, for various cutting positions on DNA are required. It is assumed that the rate of cleavage at each nucleotide position is proportional to the concentration of enzyme at that nucleotide and to the probability that the nucleotide is not blocked by drug. The probability of a nucleotide position not being blocked is calculated by assuming a conventional binding equilibrium for each binding site with exclusions for overlapping sites. The theory has been used to evaluate individual site binding constants for the antiviral agent netropsin toward a 139 base pair restriction fragment of pBR-322 DNA. Drug binding constants, evaluated from footprinting data in the presence of calf thymus DNA and poly(dGdC) as carrier and in the absence of carrier DNA, were determined by obtaining the best fit between calculated and experimental footprinting data. Although the strong sites on the fragment were all of the type (T.A)4, the value of the binding constant was strongly sequence dependent. Sites containing the dinucleotide sequence 5'-TA-3' were found to have significantly lower binding constants than those without this sequence, suggesting that an adenine-adenine clash produces a DNA structural alteration in the minor groove which discourages netropsin binding to DNA. The errors, scope, and limitations associated with the method are presented and discussed.  相似文献   

7.
Rate enhancements in the DNase I footprinting experiment.   总被引:8,自引:7,他引:1       下载免费PDF全文
Footprinting experiments for DNase I digests of a 139-base-pair segment of pBR-322 DNA in the presence of either netropsin or actinomycin D were carried out. Plots of oligonucleotide concentration as a function of drug concentration were analyzed to study the enhancement in cleavage rates at approximately 30 sites, accompanying drug binding at other sites. The pattern of enhancements is not consistent with drug-induced DNA structural changes, but agrees with a redistribution mechanism involving DNase I. Since the total number of enzyme molecules per fragment remains unchanged, drug binding at some sites increases the enzyme concentration at other sites, giving rise to increased cleavage. The consequences of the redistribution mechanism for analysis of footprinting experiments are indicated.  相似文献   

8.
We report site-specific binding constants for the intercalating anticancer drug actinomycin D (Act-D), binding to a 139-base-pair restriction fragment from pBR 322 DNA. The binding constants are derived from analysis of footprinting experiments, in which the radiolabeled 139-mer is cleaved using DNase I, the cleavage products undergo gel electrophoresis, and, from the gel autoradiogram, spot intensities, proportional to amounts of cleaved fragments, are measured. A bound drug prevents DNase I from cleaving at approximately 7 bonds, leading to decreased amounts of corresponding fragments. With the radiolabel on the 3' end of the noncoding strand (A-label), we measured relative amounts of 54 cleavage products at 25 Act-D concentrations. For cleavage of the 139-mer with the label on the 3' end of the coding strand (G-label), relative amounts of 43 cleavage products at 11 Act-D concentrations were measured. These measurements give information about approximately 120 base pairs of the restriction fragment (approximately 12 turns of the DNA helix); in this region, 14 strong and weak Act-D binding sites were identified. The model used to interpret the footprinting plots is derived in detail. Binding constants for 14 sites on the fragment are obtained simultaneously. It is important to take into account the effect of drug binding at its various sites on the local concentration of probe elsewhere. It is also necessary to include in the model weak as well as strong Act-D sites on the carrier DNA which is present, since the carrier DNA controls the free-drug concentration. As expected, the strongest sites are those with the sequence (all sequences are 5'----3') GC, with TGCT having the highest binding constant, 6.4 x 10(6) M-1. Sites having the sequence GC preceded by G are weak binding sites, having binding constants approximately 1 order of magnitude lower than those of the strong sites. Also, the non-GC-containing sequences CCG and CCC bind Act-D with a binding constant comparable to those of the weak GGC sites. The analysis may reveal drug-induced structural changes on the DNA, which are discussed in terms of the mechanism of Act-D binding.  相似文献   

9.
Chromomycin A3 (CHR) binding to the duplex d(CAAGTCTGGCCATCAGTC).d(GACTGATGGCCAGACTTG) has been studied using quantitative footprinting methods. Previous NMR studies indicated CHR binds as a dimer in the minor groove. Analysis of autoradiographic spot intensities derived from DNase I cleavage of the 18-mer in the presence of various amounts of CHR revealed that the drug binds as a dimer to the sequence 5'-TGGCCA-3',3'-ACCGGT-5' in the 18-mer with a binding constant of (2.7 +/- 1.4) x 10(7) M-1. Footprinting and fluorescence data indicate that the dimerization constant for the drug in solution is approximately 10(5) M-1. Since it has been suggested that CHR binding alters DNA to the A configuration, quantitative footprinting studies using dimethyl sulfate, which alkylates at N-7 of guanine in the major groove, were also carried out. Apparently, any drug-induced alteration in DNA structure does not affect cleavage by DMS enough to be observed by these experiments.  相似文献   

10.
DNase I and MPE.Fe (II) footprinting both employ partial cleavage of ligand-protected DNA restriction fragments and Maxam-Gilbert sequencing gel methods of analysis. One method utilizes the enzyme, DNase I, as the DNA cleaving agent while the other employs the synthetic molecule, methidium-propyl-EDTA (MPE). For actinomycin D, chromomycin A3 and distamycin A, DNase I footprinting reports larger binding site sizes than MPE.Fe (II). DNase I footprinting appears more sensitive for weakly bound sites. MPE.Fe (II) footprinting appears more accurate in determining the actual size and location of the binding sites for small molecules on DNA, especially in cases where several small molecules are closely spaced on the DNA. MPE.Fe (II) and DNase I report the same sequence and binding site size for lac repressor protein on operator DNA.  相似文献   

11.
Interaction of netropsin, distamycin A and a number of bis-netropsins with DNA fragments of definite nucleotide sequence was studied by footprinting technique. The nuclease protection experiments were made at fixed DNA concentration and varying ligand concentrations. The affinity of ligand for a DNA site was estimated from measurements of ligand concentration that causes 50% protection of the DNA site. Distribution pattern of the protected and unprotected regions along the DNA fragment was compared with the theoretically expected arrangement of the ligand along the same DNA. The comparison led us to the following conclusions: 1. Footprinting experiments show that at high levels of binding the arrangement of netropsin molecules along the DNA corresponds closely to the distribution pattern expected from theoretical calculations based on the known geometry of netropsin--DNA complex. However, the observed differences in the affinity of netropsin for various DNA sequences is markedly greater than that expected from theoretical calculations. 2. Netropsin exhibits a greater selectivity of binding than that expected for a ligand with three specific reaction centers associated with the antibiotic amide groups. It binds preferentially to DNA regions containing four or more successive AT pairs. Among 13 putative binding sites for netropsin with four or more successive AT pairs there are 11 strong binding sites and two weaker sites which are occupied at 2 D/P less than or equal to 1/9 and 2 D/P = 1/4, respectively. 3. The extent of specificity manifested by distamycin A is comparable to that shown by netropsin although the molecule of distamycin A contains four rather than three amide groups. At high levels of binding distamycin A occupies the same binding sites on DNA as netropsin does. 4. The binding specificity of bis-netropsins is greater than that of netropsin. Bis-netropsins can bind to DNA in such a way that the two netropsin-like fragments are implicated in specific interaction with DNA base pairs. However, the apparent affinity of bis-netropsins estimated from footprinting experiments is comparable with that of netropsin for the same DNA region. 5. At high levels of binding bis-netropsins and distamycin A (but not netropsin) can occupy any potential site on DNA irrespectively of the DNA sequence. 6. Complex formation with netropsin increases sensitivity to DNase I at certain DNA sites along with the protection effect observed at neighboring sites.  相似文献   

12.
A Abu-Daya  P M Brown    K R Fox 《Nucleic acids research》1995,23(17):3385-3392
We have examined the interaction of distamycin, netropsin, Hoechst 33258 and berenil, which are AT-selective minor groove-binding ligands, with synthetic DNA fragments containing different arrangements of AT base pairs by DNase I footprinting. For fragments which contain multiple blocks of (A/T)4 quantitative DNase I footprinting reveals that AATT and AAAA are much better binding sites than TTAA and TATA. Hoechst 33258 shows that greatest discrimination between these sites with a 50-fold difference in affinity between AATT and TATA. Alone amongst these ligands, Hoechst 33258 binds to AATT better than AAAA. These differences in binding to the various AT-tracts are interpreted in terms of variations in DNA minor groove width and suggest that TpA steps within an AT-tract decrease the affinity of these ligands. The behaviour of each site also depends on the flanking sequences; adjacent pyrimidine-purine steps cause a decrease in affinity. The precise ranking order for the various binding sites is not the same for each ligand.  相似文献   

13.
Techniques of DNase I and micrococcal nuclease footprinting have been used to compare the binding sites for berenil, netropsin and distamycin on two different DNA fragments. Each ligand binds to the A + T-rich zones which contain clusters of at least four A.T base pairs. Neither guanosine nor cytidine nucleotides appear to be allowed within the A + T-rich runs which constitute the preferred binding sites, although they are sometimes protected from DNase I cleavage in neighbouring regions. Berenil and netropsin share with distamycin the property of causing enhanced rates of cleavage at certain sequences flanking their binding sites. There are significant differences in the concentrations of each ligand required to produce defined patterns of protection, seemingly dependent upon the nature (and possibly the gross base composition) of the piece of DNA being used in the experiment.  相似文献   

14.
We present titrations of the human δβ-globin gene region with DNA minor groove binders netropsin, bisnetropsin, distamycin, chromomycin and four bis-quaternary ammonium compounds in the presence of calf thymus topoisomerase II and DNase I. With increasing ligand concentration, stimulation and inhibition of enzyme activity were detected and quantitatively evaluated. Additionally we show a second type of stimulation, the appearance of strong new topoisomerase II cleavage sites at high ligand concentrations. The specific binding sites of the minor groove binders of the DNA sequence and their microscopic binding constants were determined from DNase I footprints. A binding mechanism for minor groove binders is proposed in order to explain these results especially when ligand concentration is increased. © 1998 John Wiley & Sons, Ltd.  相似文献   

15.
The simultaneous analysis of DNAase I "footprinting" data and restriction endonucleases inhibition data was performed on the same DNA end-labelled fragment. The inhibition induced by netropsin, a number of bis-netropsins and distamycin A was investigated. These experiments led us to the following conclusions. The restriction endonucleases inhibition by the ligands is caused by the ligand molecules binding in the close vicinity to the restriction endonuclease recognition sequence. The zone of +/- 4 bp from the center of the restriction endonuclease recognition sequence can be defined as the zone of the influence of the bounded ligand on the restriction endonuclease. But in this case the intersection of recognition sequence and the binding site occupied by a single ligand molecule is not sufficient for the inhibition to occur. Restriction endonuclease cutting sites protected by netropsin can be predicted basing upon known nucleotide sequence specificity of netropsin. Netropsin and bis-netropsins show different nucleotide sequence specificity. This fact can be used for selective inhibition of restriction endonucleases.  相似文献   

16.
We report the synthesis, DNA-binding and cleaving properties, and cytotoxic activities of R-128, a hybrid molecule in which a bis-pyrrolecarboxamide-amidine element related to the antibiotic netropsin is covalently tethered to a phenazine-di-N-oxide chromophore. The affinity and mode of interaction of the conjugate with DNA were investigated by a combination of absorption spectroscopy, circular dichroism, and electric linear dichroism. This hybrid molecule binds to AT-rich sequences of DNA via a bimodal process involving minor groove binding of the netropsin moiety and intercalation of the phenazine moiety. The bidentate mode of binding was evidenced by linear dichroism using calf thymus DNA and poly(dA-dT).(dA-dT). In contrast, the drug fails to bind to poly(dG-dC).poly(dG-dC), because of the obstructive effect of the guanine 2-amino group exposed in the minor groove of this polynucleotide. DNase I footprinting studies indicated that the conjugate interacts preferentially with AT-rich sequences, but the cleavage of DNA in the presence of a reducing agent can occur at different sequences not restricted to the AT sites. The main cleavage sites were detected with a periodicity of about 10 base pairs corresponding to approximately one turn of the double helix. This suggests that the cleavage may be dictated by the structure of the double helix rather than the primary nucleotide sequence. The conjugate which is moderately toxic to cancer cells complements the tool box of reagents which can be utilized to produce DNA strand scission. The DNA cleaving properties of R-128 entreat further exploration into the use of phenazine-di-N-oxides as tools for investigating DNA structure.  相似文献   

17.
An analog of the antibiotic netropsin containing two netropsin-like fragments linked covalently via a platinum atom has been synthesized. DNase I and hydroxyl radical footprinting studies have shown that this compound binds at selective sites on a DNA restriction fragment with a known nucleotide sequence. After X-ray irradiation of Pt-bis-netropsin--DNA complexes a platinum-mediated cleavage of DNA is observed at specific DNA sites. This enables one to determine the location of the synthetic ligand on the DNA with a precision of about one nucleotide. The cleavage activity seems to be related to the emission of Auger electrons from the platinum atom that cause rupture of the deoxyribose residues on the two DNA strands near the position of the platinum atom in the complex.  相似文献   

18.
The mouse mammary tumor virus (MMTV) promoter is induced by glucocorticoid hormone. A robust hormone- and receptor-dependent gene activation could be reproduced in Xenopus laevis oocytes. The homogeneous response in this system allowed a detailed analysis of the DNA-protein interactions following hormone activation. The strategy of artificial regulating of gene activity by sequence-specific minor groove binding ligands is very attractive. We have synthesized and studied the interaction with DNA of bis-linked netropsin derivatives in which two monomers are attached via short linkers in head-to-head and tail-to-tail manners. We have found that cis-diammine-platinum bridged bis-netropsin added to Xenopus oocytes media penetrates cellular and nuclear membrane and binds selectively to the MMTV promoter at the DNA segment that partly overlaps with the site recognized by glucocorticoid receptor. DNase I footprinting studies demonstrate that there are more stronger binding sites for cis-diammine-platinum bridged bis-netropsin on the naked MMTV DNA which are found to be inaccessible for its binding in oocytes.  相似文献   

19.
Molecular recognition of B-DNA by Hoechst 33258.   总被引:19,自引:14,他引:5       下载免费PDF全文
The binding sites of Hoechst 33258, netropsin and distamycin on three DNA restriction fragments from plasmid pBR322 were compared by footprinting with methidiumpropyl-EDTA X Fe(II) [MPE X Fe(II)]. Hoechst, netropsin and distamycin share common binding sites that are five +/- one bp in size and rich in A X T DNA base pairs. The five base pair protection patterns for Hoechst may result from a central three base pair recognition site bound by two bisbenzimidazole NHs forming a bridge on the floor of the minor groove between adjacent adenine N3 and thymine O2 atoms on opposite helix strands. Hydrophobic interaction of the flanking phenol and N-methylpiperazine rings would afford a steric blockade of one additional base pair on each side.  相似文献   

20.
Furamidine and related diamidines represent a promising series of drugs active against widespread parasites, in particular the Pneumocystic carinii pathogen. In this series, the phenylfuranbenzimidazole diamidine derivative DB293 was recently identified as the first unfused aromatic dication capable of forming stacked dimers in the DNA minor groove of GC-containing sequences. Here we present a detailed biochemical and biophysical characterization of the DNA sequence recognition properties of DB293. Three complementary footprinting techniques using DNase I, Fe(II)-EDTA, and an anthraquinone photonuclease were employed to locate binding sites for DB293 in different DNA restriction fragments. Two categories of sites were identified by DNase I footprinting: (i) 4/5 bp sequences containing contiguous A.T pairs, such as 5'-AAAA and 5'-ATTA; and (ii) sequences including the motif 5'-ATGA.5'-TCAT. In particular, a 13-bp sequence including two contiguous ATGA motifs provided a highly preferential recognition site for DB293. Quantitative footprinting analysis revealed better occupancy of the 5'-ATGA site compared to the AT-rich sites. Preferential binding of DB293 to ATGA sites was also observed with other DNA fragments and was confirmed independently by means of hydroxyl radical footprinting generated by the Fe(II)-EDTA system, as well as by a photofootprinting approach using the probe anthraquinone-2-sulfonate (AQS). In addition, this photosensitive reagent revealed the presence of sites of enhanced cutting specific to DB293. This molecule, but not other minor groove binders such as netropsin, induces specific local structural changes in DNA near certain binding sites, as independently shown by DNase I and the AQS probe. Recognition of the ATGA sequence by DB293 was investigated further using melting temperature experiments and surface plasmon resonance (SPR). The use of different hairpin oligonucleotides showed that DB293 can interact with AT sites via the formation of 1:1 drug-DNA complexes but binds much more strongly, and cooperatively, to ATGA-containing sequences to form 2:1 drug-DNA complexes. DB293 binds strongly to ATGA sequences with no significant context dependence but is highly sensitive to the orientation of the target sequence. The formation of 2:1 DB293/DNA complexes is abolished by reversing the sequence 5'-ATGA-->3'-ATGA, indicating that directionality plays an important role in the drug-DNA recognition process. Similarly, a single mutation in the A[T-->G]GA sequence is very detrimental to the dimer interactions of DB293. From the complementary footprinting and SPR data, the 5'-ATGA sequence is identified as being a highly favored dimer binding site for DB293. The data provide clues for delineating a recognition code for diamidine-type minor groove binding agents, and ultimately to guide the rational design of gene regulatory molecules targeted to specific sites of the genetic material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号