首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The cDNAs encoding two forms of UDP glucuronosyltransferase have been expressed in cultured cells to demonstrate that one form, UDPGTr-3, glucuronidates testosterone, whereas the second form, UDPGTr-4, is mainly active toward etiocholanolone (Mackenzie, P. I. (1986) J. Biol. Chem. 261, 14112-14117; Mackenzie, P. I. (1987) J. Biol. Chem. 262, 9744-9749). In order to localize areas of the polypeptide chain involved in substrate selection, the 5' regions of UDPGTr-3 and -4 cDNAs were exchanged to form two chimeric cDNAs. A 53-kDa protein was synthesized in COS cells transfected with the chimeric UDPGTr-3.4 cDNA, which encodes the amino-terminal 298 residues of UDPGTr-3 and the carboxyl-terminal 232 residues of UDPGTr-4. This protein glucuronidated testosterone rather than etiocholanolone and had a faster electrophoretic mobility when transfected COS cells were cultured in the presence of tunicamycin, an inhibitor of N-linked glycosylation. The unglycosylated variant produced by this treatment also glucuronidated testosterone. In contrast, a 50-kDa protein that was more active toward etiocholanolone as substrate was synthesized in COS cells transfected with UDPGTr-4.3, a chimeric cDNA that encodes the amino-terminal region of UDPGTr-4 joined to the carboxyl-terminal region of UDPGTr-3. The electrophoretic mobility of this chimeric protein was unaffected by tunicamycin treatment. These results demonstrate that amino acid sequences that specify substrate specificity are localized in the amino-terminal half of the UDP glucuronosyltransferase polypeptide chain and that the presence of N-linked oligosaccharide chains on the protein does not affect the choice of substrate.  相似文献   

4.
S Yanagawa  K Hitomi  R Sasaki  H Chiba 《Gene》1986,44(2-3):185-191
We have isolated and sequenced a cDNA clone containing the entire coding region of rabbit reticulocyte 2,3-bisphosphoglycerate (DPG) synthase. The cDNA was verified by translation of the hybridization-selected RNA and by demonstrating identity of the deduced amino acid (aa) sequence to the sequences of CNBr peptides of the purified enzyme. The aa sequence of the enzyme was homologous to the reported sequence of the human enzyme [Haggarty et al., EMBO J. 2 (1983) 1213-1220], especially in the N-terminal half (aa 1-142). Northern blot analysis of rabbit reticulocyte poly(A)+ RNA revealed a single species of mRNA with about 1700 nucleotides.  相似文献   

5.
6.
A cDNA clone, pTU04, which hybridizes to two different sizes of mRNA on Northern blots was isolated from soybean suspension culture cell poly(A) RNA. Northern analysis reveals that meristematic tissue produces a 1050-nucleotide mRNA while quiescent mature cells produce primarily a 1220-nucleotide mRNA homologous to pTU04. The cDNA and its corresponding genomic clone have been partially characterized. The nucleotide sequence of the gene predicts a proline-rich protein, designated SbPRP1, which contains a signal peptide sequence and 43 repeats of a sequence consisting primarily of Pro-Pro-Val-Tyr-Lys (CCA-CCA-GTT-TAC-AAG). From nuclease S1 and hybrid-select translation analyses, the cDNA clone pTU04 appears to represent the mRNA for the mature tissue 1220-nucleotide RNA observed on Northern blots. Although there is no direct proof that the encoded protein is a cell wall protein, it has the properties similar to previously isolated cell wall proteins: 1) it is very basic with a high content of Pro, Tyr, and Lys; 2) it has similar hydropathic properties; and 3) its repeating unit shares sequence homology with that of more highly characterized cell wall proteins, generally termed extensin (Chen, J., and Varner, J. E. (1985) EMBO J. 4, 2145-2151; Smith, J. J., Muldoon, E. P., Willard, J. J., and Lamport, D. T. A. (1986) Phytochemistry 25, 1021-1030.  相似文献   

7.
《Gene》1997,187(2):165-170
By means of the yeast two-hybrid system using the 40-kDa subunit of mouse RNA polymerase I, mRPA40, as the bait, we isolated a mouse cDNA which encoded a protein with significant homology in amino acid sequence to the 12.5-kDa subunit of Saccharomyces cerevisiae RNA polymerase II, B12.5 (RPB11). Specific antibody raised against the recombinant protein that was derived from the cDNA reacted with a 14-kDa polypeptide in highly purified mammalian RNA polymerase II and did not react with any subunit of RNA polymerase I or III. Moreover, the antibody co-immunoprecipitated the largest subunit of mouse RNA polymerase II. These results provide biochemical evidence that the cDNA isolated, named mRPB14, encodes a specific subunit of RNA polymerase II, and indicate that the subunit organization of the enzyme is conserved between yeast and mouse. A possible role of the α-motif [Dequard-Chablat, M., Riva, M., Carles, C. and Sentenac, A., J. Biol. Chem. 266 (1991) 15300–15307] in the protein-protein interaction between mRPA40 and mRPB14 is also discussed.  相似文献   

8.
9.
10.
A cDNA clone (HLUG 25) encoding the complete sequence of a human liver UDP-glucuronosyltransferase was isolated from a lambda gt11 human liver cDNA library. The library was screened by hybridization to a partial-length human UDP-glucuronosyltransferase cDNA (pHUDPGT1) identified from a human liver pEX cDNA expression library by using anti-UDP-glucuronosyltransferase antibodies. The authenticity of the cDNA clone was confirmed by hybrid-select translation and extensive sequence homology to rat liver UDP-glucuronosyltransferase cDNAs. The sequence of HLUG 25 cDNA was determined to be 2104 base-pairs long, including a poly(A) tail, and contains a long open reading frame. The possible site of translation initiation of this sequence is discussed with reference to a rat UDP-glucuronosyltransferase cDNA clone (RLUG 38).  相似文献   

11.
Iwano H  Yotsumoto N  Yokota H  Yuasa A 《Life sciences》2001,68(18):2131-2139
A full-length cDNA encoding a phenol UDP-glucuronosyltransferase was isolated by plaque hybridization, RT-PCR and 5'-RACE from a cDNA library prepared from the bovine liver. The deduced amino acid sequence (529 amino acid residues) has A signal sequence (23 amino acid residues) at the amino terminus and a transmembrane-anchoring domain (17 amino acid residues) at the carboxyl terminus. The encoded protein has a potential asparagine-linked glycosylation site (Asn291). The cloned cDNA was named bovUGT1A6 on the basis of the amino acid similarity. BovUGT1A6 cloned in the pAAH5 expression vector was transformed into Saccharomyces cerevisiea AH22 cells to obtain an active 54-kDa bovUGT1A6 enzyme. The expressed enzyme represented UDP-glucuronosyltransferase activities toward 1-naphthol and 4-methylumbelliferone, confirming that the isolated cDNA is an isoform of bovine phenol UDP-glucuronosyltransferase. Microsomal UDP-glucuronosyltransferase activity toward 1-naphthol in the bovine kidney cortex was found to be higher than that in the liver and other organs, and mRNA of bovUGT1A6 was more strongly detected in the kidney on Northern blotting analysis. These results suggest that the bovine kidney, which strongly expresses bovUGT1A6, is a significant organ for xenobiotics glucuronidation.  相似文献   

12.
The mRNA encoding angiotensin I-converting enzyme, a zinc-metallo dipeptidyl carboxyhydrolase, has been identified in extracts prepared from bovine lung tissue. Bovine lung poly(A) + mRNAs were subjected to electrophoresis and northern blot hybridization analysis using a radiolabeled synthetic 24-deoxyoligonucleotide probe complementary to eight codons for amino acids at the active-site of the enzyme (Harris, R.B. & Wilson, I.B., J. Biol. Chem. 260, 2208-2211, 1985). This amino acid sequence contains the catalytic glutamic acid residue. A single RNA species (approximately equal to 4 kb) was detected which is 1 kb larger than predicted from the molecular weight of the enzyme. The excess nucleic acid composition may be due to leader and/or trailer sequences or the RNA may encode a high molecular weight precursor form of the enzyme. We have cloned an EcoR1-HindIII digest fragment (1400 bp) of the duplex cDNA derived from the bovine lung converting enzyme poly(A) + mRNA and also Bal31 deletion fragments generated from the 1400 bp clone. Several of the Bal31 clones contain the active-site sequence codons of the enzyme and the complete cDNA sequence of one of these (72 bp) has been determined. We found the amino acid sequence at the active site to be -Phe-Thr-Glu-Leu-Ala-Asn-Ser-, containing the catalytic Glu residue. This sequence is identical with the sequence that we previously determined by manual Edman degradation analysis of the appropriate active-site peptide except that we now find Asn instead of Asp. We have sequenced 670 bp of the 1400 bp clone but have not yet overlapped the active-site sequence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Poly(A) polymerase has been purified to near homogeneity from the cytoplasm of Artemia salina as described previously (Roggen, E and Slegers, H. (1985) Eur. J. Biochem. 147, 225–232). Affinity chromatography on poly(A)-Sepharose 4B separates the enzyme preparation into two fractions. In standard assay conditions poly(A) polymerase fraction I (poly(A)-Sepharose 4B unbound) and fraction II (poly(A)-Sepharose 4B bound) have specific activities of 2.4 and 8.0 μmol AMP/h per mg enzyme, respectively. Poly(A) polymerase fraction II shows a high primer specificity towards the 17 S poly(A)-containing mRNP. Depending on the reaction conditions used, poly(A) sequences of 140 ± 15 AMP residues/μg enzyme are synthesized on the latter primer. In contrast, poly(A) polymerase fraction I only elongates oligo(A) primers efficiently. An endogenous RNA is detected in poly(A) polymerase II preparations. This RNA has a length of 83 ± 2 nucleotides and is a component of a 60 kDa particle. After removal of the latter the specificity of poly(A) polymerase fraction II for the 17 S poly(A)-containing mRNP is abolished and the characteristics of the enzyme resemble those of poly(A) polymerase I.  相似文献   

14.
The enzyme(s) catalyzing the 5'-monodeiodination of thyroxine and 3,3',5'-triiodothyronine has not yet been purified, and antibodies of demonstrated specificity are not available. Thus, molecular cloning strategies which rely on the traditional screening techniques of using cDNA probes or monospecific antibodies are problematic. We previously reported that expression of type I 5'-deiodinase can be induced in Xenopus laevis oocytes by the injection of poly (A)+ RNA prepared from rat liver (St. Germain, D.L., and Morganelli, C.M. (1989) J. Biol. Chem. 264, 3054-3056). Using this expression system, we developed a hybrid arrest assay, and with it identified a 241-base pair cDNA which encodes part of this enzyme. The cDNA inhibits translation of 5'-deiodinase activity in oocytes by greater than 99% and 5'-deiodinase mRNA from rat liver poly(A)+ RNA in hybrid selection experiments. The cDNA hybridizes to a 1.9-kilobase RNA species on Northern analysis and demonstrates no significant homology to any previously cloned protein. The application of this hybrid arrest strategy for molecular cloning may prove useful for the isolation of cDNAs for proteins that are low in abundance, difficult to purify, or are subunits of a polymeric functional unit.  相似文献   

15.
In vitro translation of poly(A)+ RNA from the uropygial glands of mallard ducks (Anas platyrhynchos) generated a 29-kDa protein which cross-reacted with rabbit antibodies prepared against S-acyl fatty acid synthase thioesterase (Kolattukudy, P. E., Rogers, L., and Flurkey, W. (1985) J. Biol. Chem., 260, 10789-10793). A poly(A)+ RNA fraction enriched in this thioesterase mRNA, isolated by sucrose density gradient centrifugation, was used to prepare cDNA which was cloned in Escherichia coli using the plasmid pUC9. Using hybrid-selected translation and colony hybridization, 17 clones were selected which contained the cDNA for S-acyl fatty acid synthase thioesterase. Northern blot analysis showed that the mature mRNA for this thioesterase contained 1350 nucleotides whereas the cloned cDNA inserts contained 1150-1200 base pairs. Five of the 6 clones tested for 5'-sequence had identical sequences, and the three tested for 3'-end showed the same sequence with poly(A) tails. Two clones, pTE1 and pTE3, representing nearly the full length of mRNA, were selected for sequencing. Maxam-Gilbert and Sanger dideoxy chain termination methods were used on the cloned cDNA and on restriction fragments subcloned in M13 in order to determine the complete nucleotide sequence of the cloned cDNA. The nucleotide sequence showed an open reading frame coding for a peptide of 28.8 kDa. Two peptides isolated from the tryptic digest of the thioesterase purified from the gland showed amino acid sequences which matched with two segments of the sequence deduced from the nucleotide sequence. Another segment containing a serine residue showed an amino acid sequence homologous to the active serine-containing segment of the thioesterase domain of fatty acid synthase. Thus, the clones represent cDNA for S-acyl fatty acid synthase thioesterase. The present results constitute the first case of a complete sequence of a thioesterase.  相似文献   

16.
We report the isolation and characterization of two human liver cDNA clones, HUG-Br1 and HUG-Br2; each encodes a UDP-glucuronosyltransferase enzyme which glucuronidates bilirubin IX alpha to form both the IX alpha C8 and IX alpha C12 monoconjugates and a diconjugate. HUG-Br1 cDNA (2351 base pairs) and HUG-Br2 cDNA (2368 base pairs) encode proteins with 533 and 534 amino acid residues, respectively, with a typical membrane-insertion signal peptide, membrane-spanning domain, and 3 or 5 potential asparagine-linked glycosylation sites. At the nucleic acid and deduced amino acid sequence levels the two clones are 82% similar overall, 66% similar in the amino termini, and identical after codon 287, thus encoding proteins with the same carboxyl terminus. The mRNA encoding HUG-Br1 is of high abundance, and the one encoding HUG-Br2 is of low abundance; both are 2.6 kilobases in length. Both messages (2.6 kilobases) were present in the explanted liver of a Type I Crigler-Najjar patient, although the level for that of HUG-Br1 was reduced 4.5-fold. Northern blot analysis of poly(A)+ RNA isolated from the liver of an untreated and a phenobarbital-treated Erythrocebus patas monkey with 5'-specific probes for each clone indicated that the HUG-Br2-encoded message is induced two fold, but that for HUG-Br1 is not. These data indicate that bilirubin is glucuronidated by at least two different proteins, most likely present in very different amounts. These cDNAs which encode functional bilirubin UDP-glucuronosyltransferases will allow the isolation of an appropriate gene to develop a gene therapy model for patients which have the totally deficient trait.  相似文献   

17.
Poly(A)+ (polyadenylated) RNA was isolated from vitellogenic female-locus fat-body by LiCl/urea extraction and poly(U)-Sepharose 4B affinity chromatography. Agarose-gel electrophoresis of this poly(A)+ RNA under denaturing conditions shows the presence of a high-molecular-weight species (greater than 31 S, 7100 nucleotides) as the major species, which is absent from the RNA prepared from male-locust fat-body. Inclusion of this poly(A)+ RNA in a mRNA-dependent reticulocyte-lysate system directs the synthesis of polypeptides that could be immunoprecipitated with monospecific antibodies against locust egg vitellin. DNA complementary (cDNA) to the poly(A)+ RNA was synthesized, and back-hybridization of the cDNA to its template reveals a major abundant species comprising about 45% of the total poly(A)+ RNA hybridizing with R0t 1/2 of 2 x 10(-2) mol . litre-1 . s. Abundant cDNA isolated from the total cDNA hybridizes to poly(A)+ RNA with a R0t 1/2 of 9 x 10(-3) mol . litre-1 . s. There are 9.1 x 10(3) copies of vitellogenin mRNA per cell of vitellogenic female-locust fat-body, comprising 55% of the poly(A)+ RNA and equivalent to 0.7% of total cellular RNA.  相似文献   

18.
19.
Previous work from our laboratory (Hod, Y., Utter, M. F., and Hanson, R. W. (1982) J. Biol. Chem. 257, 13787-13794) has demonstrated that chicken kidney contains both mitochondrial and cytosolic forms of phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) and that the two forms are distinct proteins. Using poly(A+) RNA from chicken kidney, a double-stranded cDNA library was constructed. DNA clones containing sequences complementary to the mRNA for the cytosolic form of phosphoenolpyruvate carboxykinase were initially identified by colony hybridization with 32P-labeled cDNA transcribed from an RNA fraction enriched for the enzyme mRNA. The identity of plasmids containing phosphoenolpyruvate carboxykinase cDNA was confirmed by hybrid-selected translation. Mature mRNA for cytosolic phosphoenolpyruvate carboxykinase of the chicken is 2.8 kilobases in length, similar to that previously noted for mRNA coding for the same enzyme in the rat. The cDNA for the chicken enzyme hybridizes with several restriction fragments of the corresponding cDNA for the rat cytosolic phosphoenolpyruvate carboxykinase, indicating conservation of nucleotide sequences during evolution. Wide spread conservation of sequence homology is also demonstrated by the hybridization of the cDNA for the rat phosphoenolpyruvate carboxykinase with a 2.8-kilobase RNA from the livers of a variety of vertebrates including amphibian, avian, and primate species. Specific mRNA coding for the cytosolic form of phosphoenolpyruvate carboxykinase was present in chicken kidney but absent from the liver, even in animals starved for 48 h. However, the administration of cAMP to normal fed chickens caused a rapid induction of phosphoenolpyruvate carboxykinase mRNA. These findings suggest that the gene for the cytosolic enzyme in chicken liver can be expressed if the proper hormonal stimuli are present.  相似文献   

20.
Testosterone 15 alpha-hydroxylase activities and its mRNA levels are higher in kidneys than in livers from male 129/J mice. Castration of 129/J male mice resulted in repression of P-450(15 alpha) in kidney, but increased it in liver. Two types of cDNA (p15 alpha-29 (Type I) and -15 (Type II)) encoding P-450(15 alpha) were previously cloned from 129/J female livers (Burkhart, B.A., Harada, N., and Negishi, M. (1985) J. Biol. Chem. 260, 15357-15361). With the use of p15 alpha-29 as a probe, Type I and II P-450(15 alpha) cDNAs were isolated from libraries of 129/J kidney poly(A)+ RNA. The nucleotide sequences of the cDNAs showed that Type I and II cDNAs from liver and kidney were identical and shared 98.3% similarity. The deduced amino acid sequence from a full-length Type I cDNA indicated that Type I P-450(15 alpha) consists of 494 amino acids with a molecular weight of 56,594. Nine amino acid substitutions were found in the Type II clone in 432 amino acids overlapping Type I. Type I cDNA clones accounted for approximately 90% P-450(15 alpha) clones isolated from a male kidney library, whereas approximately 90% of cDNA clones in a female kidney library were Type II. Liver cDNA libraries from males and females contained similar ratios of Type I and II. Effects of castration on Type I and II mRNAs were determined by Southern hybridization of a 32P-labeled ClaI-ClaI fragment from p15 alpha-29 to cDNAs synthesized from kidney and liver poly(A)+ RNAs prepared from sham-operated, castrated 129/J mice. The double-stranded cDNAs were digested with ClaI and PstI prior to gel electrophoresis to create the diagnostic restriction fragments specific for Type I or II. Castration resulted in decreased levels of Type I mRNA in male kidney. In male liver, only Type I mRNA rose significantly in response to castration. Testosterone administration returned the Type I mRNA to normal levels in castrated mice. It therefore appears that the high levels of P-450(15 alpha) in male kidney were due to androgen-dependent induction of Type I mRNA. Both Types I and II were repressed in male liver, which results in decreased levels of P-450(15 alpha). Androgen was responsible for the repression and expression of Type I in liver and kidney, but not Type II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号