首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Human Lp[a] was isolated in preparative amounts from two donors; the native lipoprotein and its constituent apoproteins, apo[a] and apoB, were characterized extensively. Based on differences in apparent molecular weight, four different isoforms of apo[a], a1-a4, were observed between the two donors. The number and relative distribution of these isoforms varied between donors but were constant for each donor. Each apo[a] isoform was shown to be derived from a discrete apo[a]-B100 disulfide-linked complex present before reduction. Complete delipidation of Lp[a] was followed by solubilization, reduction, and carboxamidomethylation of the constituent apoproteins. These apoproteins were then separated by immunoaffinity chromatography using anti-apo[a]- or anti-apoB-Sepharose; their purity and structural integrity were demonstrated by Western blot analysis. ApoB isolated by this procedure was essentially identical to apoB from autologous LDL with respect to molecular weight, secondary structure, amino acid composition, and sialic acid content. However, apo[a] differed from apoB in that it exhibited: a much less alpha-helical, less beta, but much more disordered structure; a lower proportion of aspartate, isoleucine, leucine, phenylalanine, and lysine, but a higher proportion of proline, glycine, and threonine; and a much higher content of sialic acid. These results indicate that apo[a] is not a superglycosylated form of apoB but is distinctly different in its composition and structure.  相似文献   

3.
4.
5.
High density lipoproteins (HDL) consist of a mixture of chemically and functionally distinct families of particles defined by their characteristic apolipoprotein (Apo) composition. The two major lipoprotein families are lipoprotein A-I (LP-A-I) and lipoprotein A-I:A-II (LP-A-I:A-II). This study describes the isolation of a third minor HDL family of particles referred to as lipoprotein A-II (LP-A-II) because it lacks ApoA-I and contains ApoA-II as its main or sole apolipoprotein constituent. Because ApoA-II is an integral protein constituent of three distinct lipoprotein families (LP-A-I:A-II, LP-A-II: B:C:D:E and LP-A-II), LP-A-II particles were isolated from whole plasma by sequential immunoaffinity chromatography on immunosorbers with antisera to ApoA-II, ApoB and ApoA-I, respectively. In normolipidemic subjects, the concentration of LP-A-II particles, based on ApoA-II content, is 4-18 mg/dl accounting for 5-20% of the total ApoA-II not associated with ApoB-containing lipoproteins. The lipid composition of LP-A-II particles is characterized by low percentage of triglycerides and cholesterol esters and a high percentage of phospholipids in comparison with lipid composition of LP-A-I and LP-A-II: A-II. The major part of LP-A-II particles contain ApoA-II as the sole apolipoprotein constituent; however, small subsets of LP-A-II particles may also contain ApoD and other minor apolipoproteins. The lipid/protein ratio of LP-A-II is higher than those of LP-A-I and LP-A-I:A-II. In homozygous ApoA-I and ApoA-I/ApoC-III deficiencies, LP-A-II particles are the only ApoA-containing high density lipoprotein with levels found to be within the same range (7-13 mg/dl) as those of normolipidemic subjects. However, in contrast to normal LP-A-II, their lipid composition is characterized by higher percentages of triglycerides and cholesterol esters and a lower percentage of phospholipids and their apolipoprotein composition by the presence of ApoC-peptides and ApoE in addition to ApoA-II and ApoD. These results show that LP-A-II particles are a minor HDL family and suggest that, in the absence of ApoA-I-containing lipoproteins, they become an efficient acceptor/donor of ApoC-peptides and ApoE required for a normal metabolism of triglyceride-rich lipoproteins. Their other possible functional roles in lipid transport remain to be established in future experiments.  相似文献   

6.
Low density lipoprotein (LDL) was fractionated into subspecies by the use of DEAE-agarose column chromatography and the peptide compositions of the LDL subspecies which eluted at different NaCl concentrations were determined. LDL which elutes at low NaCl concentration has relatively less non-B apoprotein than does LDL which elutes at high salt concentration. The LDL subspecies which elute at high NaCl concentration contain more apo A-1 than do those which elute at the lower NaCl molarity. These results indicate that LDL consists of subfractions which differ in their peptide compositions.  相似文献   

7.
8.
A procedure was developed for the dissociation of apolipoprotein (a) (apo (a)) from pure human lipoprotein (a) (Lp(a)) prepared by density gradient ultracentrifugation and gel filtration. Lp(a) was ultracentrifuged through a layer of saline which was adjusted to a density of 1.182 g/mL and contained 30 mM dithiothreitol (50 mM) and phenylmethylsulfonyl fluoride (1.25 mM). Following centrifugation, the lipid and apolipoprotein B (apo B) were recovered as a lipoprotein (Lp(a) B) in the supernatant fraction, while the apo (a) was recovered as a lipid-poor protein pellet. An investigation of the supernatant lipoprotein by electron microscopy and compositional analysis revealed that it was similar in size and composition to low density lipoprotein (LDL) isolated from the same density range and contained apo B100 with an amino acid and carbohydrate composition which was similar to apo B from LDL. Estimates of the apparent molecular weight of the apo (a) varied amongst individuals but was always greater than apo B100 (congruent to 450,000). The amino acid composition of apo (a), which was very distinct from apo B, was characterized by a higher content of serine, threonine, proline, and tyrosine, but lower amounts of isoleucine, phenylalanine, and lysine when compared with apo B of Lp(a) or LDL. The apo (a) contained a much higher proportion of carbohydrate, in particular N-acetylgalactosamine, galactose, and N-acetylneuraminic acid (which were three- to six-fold higher) than the apo B of Lp(a). It is concluded that apo (a) is distinct from other apolipoproteins owing to its low avidity for lipid and the nature of the interaction with apo B. Lp(a) consists of an LDL-like particle with a carbohydrate-rich apo (a) attached to the surface of apo B.  相似文献   

9.
10.
Metabolic fate of rat and human lipoprotein apoproteins in the rat   总被引:7,自引:0,他引:7  
The fate of (125)I-labeled apolipoproteins was studied in vivo in rats that had received intravenous injections of (125)I-labeled rat HDL and (125)I-labeled human HDL, LDL, and VLDL. Plasma decay curves of rat and human HDL were exponential with similar half-lives in the circulation (11-12 hr). After injection, low molecular weight apolipoproteins (apoLP-alanine of human HDL and fraction HS-3 of rat HDL) were found to redistribute to other lipoproteins, predominantly VLDL. Decay curves of individual HDL proteins were constructed after lipoprotein fractionation, delipidation, and polyacrylamide gel electrophoresis. It was found that the half-lives of the different HDL apoproteins were not identical. A major rat HDL protein (52% of total counts) had a circulating half-life (t((1/2))) of 12.5 hr. Two others had a t((1/2)) of 8-9 hr while the t((1/2)) of several others was 11-12 hr. The t((1/2)) of three well-characterized human HDL apoproteins, apoLP-glutamine I, apoLP-glutamine II, and apoLP-alanine, were 13.5, 9.0, and 15.0 hr, respectively. The fate of (125)I-labeled human VLDL and LDL apoproteins in rats was similar to that described previously in humans. After injection of (125)I-labeled human VLDL into rats, apoLP-glutamic acid and apoLP-alanine rapidly transferred to rat HDL and were lost thereafter from the circulation from both VLDL and HDL. The apoLDL moiety of human VLDL moved metabolically to the LDL density range (d = 1.019-1.063) through a lipoprotein of intermediate density (d = 1.006-1.019).  相似文献   

11.
While it is believed that placental tissue is very active in lipid metabolism, the nature of lipid containing particles secreted (if any) by this tissue is not known. Lipoprotein profile of human placental tissue was analysed by gel filtration, gel electrophoresis and electron microscopy. Our studies demonstrated the presence of lipoproteins with unusual compositions. A novel major lipoprotein (which eluted in the same position on plasma VLDL) was characterized. While this lipoprotein floated at density greater than 1.006 gr/ml and contained apo B (same as plasma VLDL) it differed from plasma VLDL in a) size, b) contining a significant amount of apo Al, and c) carried bulk of the cholesterol (80% in free form) and phospholipids. This study suggests that placental tissue might contain unique lipoproteins perhaps serving specific metabolic needs.  相似文献   

12.
This study was designed to identify a method for the measurement of human high density lipoprotein subfraction (HDL2 and HDL3) metabolism. Apolipoproteins A-I, A-II, and C, the major HDL apoproteins, were radioiodinated and incorporated individually into HDL2 and HDL3 in vitro. Using a double label technique, the turnover of apoA-I in HDL2 and HDL3 was measured simultaneously in a normal male. The apoprotein exchanged rapidly between the two subfractions, evidenced by equilibration of their apoA-I specific activity. Radiolabeled apoA-II, incorporated into the subfractions, showed a similar exchange in vitro. Incubation of 131I-labeled very low density lipoproteins (VLDL) with HDL or its subfractions resulted in transfer of C proteins from VLDL to the HDL moiety. The extent of transfer was dependent on the HDL subfraction present; 50% of the VLDL apoC was transferred to HDL3, while the transfer to total HDL and HDL2 was 69% and 78%, respectively. ApoC also exchanged between HDL2 and HDL3, again showing a preference for the former and suggesting a primary metabolic relationship between VLDL and HDL2. Overall, the study indicates that apoA-I, apoA-II, and the C proteins exist in equilibrium between HDL2 and HDL3. This phenomenon precludes their use as probes for HDL subfraction metabolism in humans.  相似文献   

13.
Lipoprotein lipase from human post-heparin plasma was purified at least 10,000-fold using the Fielding procedure. When the purified lipoprotein lipase was subjected to polyacrylamide electrophoresis, a single band with lipolytic activity and four additional bands were observed. These four bands are identical in their electrophoretic and immunochemical properties to the polypeptides of apolipoprotein C. Evidence is presented which suggests that one or more of these polypeptides may serve as a partial activator of this enzyme.  相似文献   

14.
In this report we have described the purification of a human plasma phospholipid transfer protein, designated LTP-II, which displayed the following characteristics: i) facilitated both the exchange and net mass transfer of lipoprotein phospholipids; ii) did not facilitate the transfer of lipoprotein cholesteryl esters (CE) or triglycerides (TG); iii) was not recognized by antibody to the human cholesteryl ester transfer protein (LTP-I); iv) showed no amino acid sequence homology to the cholesteryl ester transfer protein (LTP-I); v) has an apparent molecular weight (Mr) of 70,000 off Sephacryl S200, and 69,000 off sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE); vi) has an apparent isoelectric point of 5.0 by chromatofocusing; and vii) when added to an incubation mixture of VLDL, HDL3, and the human plasma cholesteryl ester transfer protein (LTP-I), enhanced the observed transfer of cholesteryl esters from HDL3 to VLDL, even though LTP-II has no intrinsic cholesteryl ester transfer activity of its own. These results show that this phospholipid transfer protein is unique from the human plasma cholesteryl ester transfer protein, and may play an important role in human lipoprotein lipid metabolism.  相似文献   

15.
A carboxypeptidase which cleaves the C-terminal arginine or lysine from peptides was purified by a two-step procedure; gel filtration on Sephacryl S-300 and affinity chromatography on arginine-Sepharose. The activity increased 280% after the first step, indicating the removal of an inhibitor from the crude starting material. The activity in the crude seminal plasma eluted from the Sephacryl S-300 column with an apparent Mr 98,000 and after purification with an Mr 67,000, indicating that it binds to another protein in the crude seminal plasma. When analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, a single band at Mr 53,000 was seen which was converted to two smaller bands (Mr 32,000 and/or 26,000) after reduction. The seminal plasma carboxypeptidase has a neutral pH optimum, is inhibited by o-phenanthroline and by the inhibitor of carboxypeptidase B-type enzymes, 2-mercaptomethyl-3-guanidinoethylthiopropanoic acid, and can be activated by cobalt. The purified enzyme has a high specific activity (67.8 mumol/min/mg) with the ester substrate benzoyl (Bz)-Gly-argininic acid and readily cleaves Bz-Ala-Lys, Bz-Gly-Arg, and Bz-Gly-Lys. It also hydrolyzes biologically active peptides such as bradykinin (Km = 6 microM, kcat = 43 min-1), Arg6-Met5-enkephalin (Km = 103 microM, kcat = 438 min-1), and Lys6-Met5-enkephalin (Km = 848 microM, kcat = 449 min-1). The seminal plasma carboxypeptidase did not cross-react with antiserum to human plasma carboxypeptidase N; other properties distinguish it from the blood plasma enzyme as well as from pancreatic carboxypeptidase B and granular, acid carboxypeptidase H (enkephalin convertase). The carboxypeptidase could be involved in the control of fertility by activating or inactivating peptide hormones in the seminal plasma. In addition it could contribute to the degradation of basic proteins during semen liquefaction.  相似文献   

16.
17.
Proteolytic treatment of human serum low density lipoprotein (LDL) resulted in the observation of interesting time-dependent changes in the sodium dodecyl sulfate-polyacrylamide gel electrophoretic pattern of apo-LDL. Five major fragments with well-defined relative mobilities appeared within 30 min of protease treatment. Prolonged treatment with subtilisin caused changes in the amount of peptides in each of the five bands but their positions on the gel remained unchanged. Periodic acid-Schiff base staining of the gel showed a proteolytic fragment with an apparent molecular weight of 110.000 (actually a cross-linked dimer of two peptides with molecular weights of 77,000 and 68,000) to be a carbohydrate-bearing peptide that was most resistant to further proteolysis and therefore responsible for the interaction between the digested LDL and concanavalin A.  相似文献   

18.
Treatment of native human Lp(a) under nondenaturing conditions with dithiothreitol yielded both a lipoprotein particle and a lipid-free protein component that could be separated by either ultracentrifugation at d 1.063 g/ml or heparin-Sepharose chromatography. The protein component only showed antigenicity against anti-Lp(a) but not against anti-B. It was heterogeneous according to SDS polyacrylamide gel electrophoresis (PAGE) consisting of two bands, a major band with molecular weight similar to apoB and a minor band with slightly lower molecular weight. The lipoprotein particle was similar to LDL with regard to its electrophoretic mobility, lipid-protein composition, its apparent molecular weight according to gel-exclusion chromatography, and its apoprotein content; only apoB was found to be present by SDS-PAGE and immunochemical analysis. This lipoprotein also proved to be identical to LDL in its uptake by the receptor-mediated LDL-pathway in cultured human fibroblasts as shown by the similarity of the concentration-dependent binding, internalization, and degradation curves at 37 degrees C of the 125I-labeled lipoproteins. Normal Lp(a) was not taken up as readily as either its reduced lipoprotein component or LDL in the various steps of the receptor-mediated pathway. The maximal capacity for Lp(a) in the degradation assay was only 25% of that of LDL and it had a fourfold higher Km. It is therefore probable that the LDL-receptor-mediated pathway is not a major route for the clearance of Lp(a) in vivo. These studies suggest that Lp(a) is, in essence, an LDL-particle to which the protein (a) is attached through disulfide bonds to apoB.  相似文献   

19.
20.
1. Lipoprotein B from female Lp(a)-lipoprotein-negative serum was isolated from the fraction of density 1.073-1.125 by using immunoadsorbent; 2.5mg of freeze-dried material was obtained from 100ml of serum from a fasting patient. 2. The hydrated density of this lipoprotein was found to be 1.084g/cm(3). A flotation rate F(1.200) of 9.4 and lipid/protein ratio 1.40 were found, similar to that of high-density (d 1.073-1.125) lipoprotein preparations. 3. From immunochemical and electrophoretic studies of the intact and totally delipidized lipoprotein B it was concluded that this lipoprotein represents a separate family within the high-density range of human serum lipoproteins. 4. The possibility that the isolated lipoprotein B is an artifact created by the isolation procedure is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号