首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Biochemical analysis of the beta-globin gene function has led to the identification of several multi-protein complexes at the locus control region (LCR), insulator and promoters. This review briefly summarizes these multi-protein complexes and discusses their contribution towards the regulation of the beta-globin gene expression.  相似文献   

2.
3.
Structure and organization of the bovine beta-globin genes   总被引:1,自引:0,他引:1  
Genomic clones spanning the entire cow beta-globin gene locus have been isolated and characterized. These clones demonstrate that the linkage of embryonic-like (epsilon) genes and pseudogenes (psi) to the previously described fetal (gamma) and adult (beta) genes is as follows: 5'-epsilon 3-epsilon 4-psi 3-beta-epsilon 1-epsilon 2-psi 1- psi 2-gamma-3'. Present data indicate that, like that of the goat, the fetal and adult genes arose via block duplication of an ancestral four- gene set: epsilon-epsilon-psi-beta. This duplication event preceded the divergence of cows and goats, which occurred greater than or equal to 18-20 Myr ago. However, cows do not have the additional four-gene block containing a preadult/stress globin gene (beta C). Furthermore, the cow fetal cluster contains an extra beta-like pseudogene, which apparently arose by a small-scale duplication. The fixation of this duplication may indicate a possible evolutionary role for pseudogenes.   相似文献   

4.
Sequence organization of the beta-globin mRNA precursor.   总被引:4,自引:1,他引:3       下载免费PDF全文
The sequence organization of the beta-globin mRNA precursor has been determined directly by analyzing the resistant fragments from the RNase A digestion of the precursor RNA-globin cDNA hybrid. Three fragments are obtained which proves that the beta-globin mRNA sequence in its precursor is split into three discontinuous segments. The two intervening sequences in the beta-globin gene are therefore transcribed and removed during mRNA maturation.  相似文献   

5.
Primary structure of the goat beta-globin locus control region   总被引:6,自引:0,他引:6  
The goat beta-globin cluster is composed of a triplicated four-gene set. A locus control region (LCR) containing elements homologous to 5'DNase I hypersensitive sites (HS) 1, 2, and 3 of the human beta-globin LCR has been identified at the 5' end of this locus. We determined 10.2 kb of nucleotide sequence from the goat beta-globin locus control region. Self-comparison of this sequence by dot matrix analysis revealed the presence of six complete and three incomplete artiodactyl repeats. A novel repeated element, termed D repeat, was also identified. Southern blotting analysis demonstrated that these elements exist in the goat genome as a low to medium frequency interspersed repeat family. The absence of any other large region of self-homology (direct or inverted) in the goat LCR suggests that 5'HSs 1, 2, and 3 did not arise through duplication, but rather evolved independently. By comparing goat 5'HS 1 to those of human, rabbit, and mouse, we show a greater than 80% conservation in sequence between the four species. This level of evolutionary conservation suggests that 5'HS 1 plays an important role in the regulation of beta-globin loci.  相似文献   

6.
Restriction maps were made by Southern blot analysis of the Amy (alpha-amylase) region in 7 strains of D. melanogaster using endonucleases SalI, XhoI and EcoRI. These were compared to the map of lambda Dm65 which contains the cloned Amy region. Strains used produce either two amylase variants, a single variant, or no amylase, yet all 7 strains carry two Amy genes as inverted repeats at the Amy locus. This and the orientation of the repeats resembles the situation in lambda Dm65. Most restriction sites mapped are conserved but two strains contain a large insertion which differs in size and position between strains. A complex anomaly, probably an inversion, exists at the Amy locus in a null strain. Maps for our Amy1,3 strain and the lambda Dm65 clone are identical, the DNA of each having been derived from a Canton-S wild stock. Restriction and genetic maps of the Amy region were aligned and alleles assigned to the proximal and distal genes, Amy-p and Amy-d.  相似文献   

7.
The beta-globin locus control region (LCR) is a cis regulatory element that is located in the 5' part of the locus and confers high-level erythroid lineage-specific and position-independent expression of the globin genes. The LCR is composed of five DNase I hypersensitive sites (HSs), four of which are formed in erythroid cells. The function of the 5'-most site, HS5, remains unknown. To gain insights into its function, mouse HS5 was cloned and sequenced. Comparison of the HS5 sequences of mouse, human, and galago revealed two extensively conserved regions, designated HS5A and HS5B. DNase I hypersensitivity mapping revealed that two hypersensitive sites are located within the HS5A region (designated HS5A(major) and HS5A(minor)), and two are located within the HS5B region (HS5B(major), HS5B(minor)). The positions of each of these HSs colocalize with either GATA-1 or Ap1/NF-E2 motifs, suggesting that these protein binding sites are implicated in the formation of HS5. Gel retardation assays indicated that the Ap1/NF-E2 motifs identified in murine HS5A and HS5B interact with NF-E2 or similar proteins. Studies of primary murine cells showed that HS5 is formed in all hemopoietic tissues tested (fetal liver, adult thymus, and spleen), indicating that this HS is not erythroid lineage specific. HS5 was detected in murine brain but not in murine kidney or adult liver, suggesting that this site is not ubiquitous. The presence of GATA-1 and NF-E2 motifs (which are common features of the DNase I hypersensitive sites of the LCR) suggests that the HS5 is organized in a manner similar to that of the other HSs. Taken together, our results suggest that HS5 is an inherent component of the beta-globin locus control region.  相似文献   

8.
9.
10.
The cell cycle-dependent, ordered assembly of protein prereplicative complexes suggests that eukaryotic replication origins determine when genomic replication initiates. By comparison, the factors that determine where replication initiates relative to the sites of prereplicative complex formation are not known. In the human globin gene locus previous work showed that replication initiates at a single site 5′ to the β-globin gene when protein synthesis is inhibited by emetine. The present study has examined the pattern of initiation around the genetically defined β-globin replicator in logarithmically growing HeLa cells, using two PCR-based nascent strand assays. In contrast to the pattern of initiation detected in emetine-treated cells, analysis of the short nascent strands at five positions spanning a 40 kb globin gene region shows that replication initiates at more than one site in non-drug-treated cells. Quantitation of nascent DNA chains confirmed that replication begins at several locations in this domain, including one near the initiation region (IR) identified in emetine-treated cells. However, the abundance of short nascent strands at another initiation site ~20 kb upstream is ~4-fold as great as that at the IR. The latter site abuts an early S phase replicating fragment previously defined at low resolution in logarithmically dividing cells.  相似文献   

11.
12.
Structural polymorphism of DNA is a widely accepted property. A simple addition to this perception has been our recent finding, where a single nucleotide polymorphism (SNP) site present in a quasipalindromic sequence of β-globin LCR exhibited a hairpin-duplex equilibrium. Our current studies explore that secondary structures adopted by individual complementary strands compete with formation of a perfect duplex. Using gel-electrophoresis, ultraviolet (UV)-thermal denaturation, circular dichroism (CD) techniques, we have demonstrated the structural transitions within a perfect duplex containing 11 bp quasipalindromic stretch (TGGGG(G/C)CCCCA), to hairpins and bulge duplex forms. The extended version of the 11 bp duplex, flanked by 5 bp on both sides also demonstrated conformational equilibrium between duplex and hairpin species. Gel-electrophoresis confirms that the duplex coexists with hairpin and bulge duplex/cruciform species. Further, in CD spectra of duplexes, presence of two overlapping positive peaks at 265 and 285 nm suggest the features of A- as well as B-type DNA conformation and show oligomer concentration dependence, manifested in A → B transition. This indicates the possibility of an architectural switching at quasipalindromic region between linear duplex to a cruciform structure. Such DNA structural variations are likely to be found in the mechanics of molecular recognition and manipulation by proteins.  相似文献   

13.
Hypersensitive site 5 (5'HS5) of the beta-globin Locus Control Region functions as a developmental stage-specific border in erythroid cells. Here, we have analyzed the role of 5'HS5 in the three dimensional organization of the beta-gene locus using the Chromatin Conformation Capture (3C) technique. The results show that when 5'HS5 is deleted from the locus, both remote and internal regulatory elements are still able to interact with each other in a three-dimensional configuration termed the Active Chromatin Hub. Thus, the absence of 5'HS5 does not have an appreciable effect on the three dimensional organization of the beta-globin locus. This rules out models in which 5'HS5 nucleates interactions with remote and/or internal regulatory elements. We also determined the binding of CTCF, the only defined insulator protein in mammalian cells, to 5'HS5 by using chromatin immunoprecipitation (ChIP) assays. We detect low levels of CTCF binding to 5'HS5 in primitive erythroid cells, in which it functions as a border element. Surprisingly, we also observe binding levels of CTCF to 5'HS5 in definitive erythroid cells. Thus, binding of CTCF to 5'HS5 per se does not render it a functional border element. This is consistent with the previous data suggesting that CTCF has dual functionality.  相似文献   

14.
gammadelta T cells commonly account for 0.5%-5% of human (gammadelta low species) circulating T cells, whereas they are very common in chickens, and they may account for >70% of peripheral cells in ruminants (gammadelta high species). We have previously reported the ovine TRG2@ locus structure, the first complete physical map of any ruminant animal TCR locus. Here we determined the TRG1@ locus organization in sheep, reported all variable (V) gamma gene segments in their germline configuration and included human and cattle sequences in a three species comparison. The TRG1@ locus spans about 140 kb and consists of three clusters named TRG5, TRG3, and TRG1 according to the constant (C) genes. The predicted tertiary structure of cattle and sheep V proteins showed a remarkably high degree of conservation between the experimentally determined human Vgamma9 and the proteins belonging to TRG5 Vgamma subgroup. However systematic comparison of primary and tertiary structure highligthed that in Bovidae the overall conformation of the gammadelta TCR, is more similar to the Fab fragment of an antibody than any TCR heterodimer. Phylogenetic analysis showed that the evolution of cattle and sheep V genes is related to the rearrangement process of V segments with the relevant C, and consequentely to the appartenence of the V genes to a given cluster. The TRG cluster evolution in cattle and sheep pointed out the existence of a TRG5 ancient cluster and the occurrence of duplications of its minimal structural scheme of one V, two joining (J), and one C.  相似文献   

15.
16.
Recent additions have expanded the interleukin (IL)-1 gene family to 10 members. We have determined the order, orientation, and intergenic distance of the nine IL-1 family genes that lie on human chromosome 2. We report cDNA sequences for the mouse orthologs of three of these genes. The order and orientation of the mouse genes have been mapped, and the mouse locus compared with the human locus. There is a break in the mouse locus of > 100 kb, compared with the human locus, located between Il1b and the most centromere-proximal of the novel mouse genes. The mouse seems to be missing an ortholog of human IL1F7.  相似文献   

17.
18.
Molete JM  Petrykowska H  Sigg M  Miller W  Hardison R 《Gene》2002,283(1-2):185-197
The distal locus control region (LCR) is required for high-level expression of the complex of genes (HBBC) encoding the beta-like globins of mammals in erythroid cells. Several major DNase hypersensitive sites (HSs 1-5) mark the LCR. Sequence conservation and direct experimental evidence have implicated sequences within and between the HS cores in function of the LCR. In this report we confirm the mapping of a minor HS between HS3 and HS4, called HS3.2, and show that sequences including it increase the number of random integration sites at which a drug resistance gene is expressed. We also show that nuclear proteins including GATA1 and Oct1 bind specifically to sequences within HS3.2. However, the protein Pbx1, whose binding site is the best match to one highly conserved sequence, does not bind strongly. GATA1 and Oct1 also bind in the HS cores of the LCR and to promoters in HBBC. Their binding to this minor HS suggests that they may be used in assembly of a large complex containing multiple regulatory sequences.  相似文献   

19.
20.
D hordein, a prolamin storage protein of barley endosperms, is highly homologous to the high molecular weight (HWM) glutenin subunits, which are the major determinants of bread-making quality in wheat flour. In hexaploid wheat (AABBDD), each genome contains two paralogous copies of HMW-glutenin genes that encode the x- and y-type HMW-glutenin subunits. Previously, we reported the sequence analysis of a 102-kb genomic region that contains the HMW-glutenin locus of the D genome from Aegilops tauschii, the donor of the D genome of hexaploid wheat. Here, we present the sequence analysis of a 120-kb D-hordein region of the barley genome, a more distantly related member of the Triticeae grass tribe. Comparative sequence analysis revealed that gene content and order are generally conserved. Genes included in both of these orthologous regions are arranged in the following order: a Xa21-like receptor kinase, an endosperm globulin, an HMW prolamin, and a serine (threonine) protein kinase. However, in the wheat D genome, a region containing both the globulin and HMW-glutenin gene was duplicated, indicating that this duplication event occurred after the separation of the wheat and barley genomes. The intergenic regions are divergent with regard to the sequence and structural organization. It was found that different types of retroelements are responsible for the intergenic structure divergence in the wheat and barley genomes. In the barley region, we identified 16 long terminal repeat (LTR) retrotransposons in three distinct nested clusters. These retroelements account for 63% of the contig sequence. In addition, barley D hordein was compared with wheat HMW glutenins in terms of cysteine residue conservation and repeat domain organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号