首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the fusion process of unsealed and resealed erthyrocyte ghosts with influenza virus (A/PR8/34, A/Chile 1/83), were measured under hypotonic, isotonic and hypertonic conditions using a recently developed fluorescence assay (Hoekstraet al. (1984)Biochemistry 23:5675–5681]. No correlation between the external osmotic pressure and kinetics and extent of fusion was observed. Influenza viruses fuse as effectively with unsealed ghosts as with resealed ghosts. It is concluded that osmotic forces as well as osmotic swelling of cells are not necessary for virus-cell membrane fusion.  相似文献   

2.
Human erythrocyte ghosts prepared by hypotonic hemolysis can be fused by Sendai virus, provided that certain macromolecules (bovine serum albumin, dextran and others) are sequestered in the ghosts. Since fusion of the ghosts is dependent on intactness of the F(fusion)-glycoprotein of the virion, and since the other requirements for this reaction are also similar to those for the Sendai virus-induced fusion of intact erythrocytes, this system can be used as a model for the Sendai virus-induced cell fusion reaction. Sequestered macromolecules seem to be required for rounding of locally fused ghosts. Under low osmotic swelling conditions, such as use of ghosts sealed without macromolecules or using bovine serum albumin-loaded ghosts sealed in the presence of external macromolecules, no apparently complete cell fusion (large spherical polyghost formation) could be observed. Even under these conditions, however, occurence of local cell fusion could be demonstrated either by transfer of fluorescent-labeled albumin from one ghost to an other, or by observation of polyghost formation after osmotic swelling in the cold. Thus, final stages of the fusion reaction can be divided into local cell-cell fusion which could not be observed by phase-contrast microscopy, and rounding (i.e. formation of spherical polyghost). For the observation of fusion of ghosts, the last step seems to be important.  相似文献   

3.
The effects of variations in preparative procedures on the volume and content of resealed red cell ghosts have been investigated. Following hypotonic lysis at 0 degrees C, and after a variable delay time (td), concentrated buffer was added to restore isotonicity; resealing was then induced by incubation at 37 degrees C for one hour. Using this procedure, both the resealed ghost volume and the residual hemoglobin (Hb) content decreased for increasing td. If ghosts were maintained at 0 degree C (i.e., no 37 degrees C incubation), they remained nearly spherical until isotonicity was restored. Their volume then fell abruptly, but subsequently increased toward an intermediate level. The fall in volume was greater and the final level achieved was smaller for longer delay times. At 0 degree C, return to isotonicity also halted the otherwise gradual loss of residual Hb from unsealed ghosts. In addition, ghosts with internal osmolality of 40 to 300 mosmol/kg were prepared by adding different amounts of concentrated buffer before resealing for one hour at 37 degrees C. Under these conditions, the final ghost volume was inversely related to the resealing osmolality (i.e., lower osmolality yielded a larger volume). Ghost volume also increased, along with Hb content, if the quantity or concentration of the red cell suspension added to the lysing medium was increased. We conclude that resealed ghost volume is influenced by the ratio of lysate to resealing medium osmolality and by the colloid osmotic pressure of the residual ghost Hb. These data indicate methods by which ghosts with desired characteristics can be prepared, and have potential application for studies of ghost mechanical and biophysical behavior.  相似文献   

4.
Summary Using the flow EPR technique, we investigated the resealed ghost deformability in shear flow and the effects of the altered state of cytoskeletal network induced by hypotonic incubation of ghosts. Isotonically resealed ghosts in the presence of Mg-ATP, in which alteration of cytoskeletal network is not effected, have smooth biconcave discoid shapes, and show a flow orientation and deformation behavior similar to that of erythrocytes, except that higher viscosities are required to induce the same degrees of deformation and orientation as in erythrocytes. The flow behavior of resealed ghosts is Mg-ATP dependent, and the shape of the ghosts resealed without Mg-ATP is echinocytic. In contrast, the ghosts resealed by hypotonic incubation show a markedly reduced deformability even with Mg-ATP present. Nonreducing, nondenaturing polyacrylamide gel electrophoresis (PAGE) of the low ionic strength extracts from hypotonically resealed ghosts reveals a shift of the spectrin tetramer-dimer equilibrium toward the dimers. In the maleimide spin-labeled ghosts, the ratios of the weakly immobilized to the strongly immobilized EPR intensities are larger in hypotonically resealed ghosts than in the isotonically resealed ghosts, indicating an enhanced mobility in the spectrin structure in the former. Photomicrographs of hypotonically resealed ghosts show slightly stomatocytic transformations. These data suggest that the shape and the deformability loss in hypotonically resealed ghosts are related to an alteration of the spectrin tetramer-dimer equilibrium in the membrane. Thus, the shift of the equilibrium is likely to affect the regulation of the membrane deformability both in normal and pathological cells such as hereditary elliptocytes.  相似文献   

5.
The changes of volume distribution curves of erythrocytes during and after lysis by complement or nystatin or in hypotonic buffers were measured by flow cytometry. Biconcave and spheroidal ghosts were observed after complement lysis and spheroidal ghosts were seen only after nystatin and hypotonic lysis. The spheroidal ghosts derived from red cells lysed by complement or nystatin were permeable to sucrose; those from hypotonic lysis were sucrose-impermeable. Spheroidal ghosts after complement lysis remained permeable for sucrose whereas spheroidal ghosts after nystatin lysis resealed after removal of the drug by washing. Biconcave ghosts produced by complement lysis were almost impermeable to sucrose initially and therefore responded to osmotic changes, but they became sucrose-permeable upon prolonged incubation at 37 degrees C. The rate of sucrose equilibration increased as the stability of the biconcave shape diminished with increasing numbers of C5b-9 complexes. At 850 C5b-9 complexes/ghost, the biconcave shape and impermeability for sucrose were completely lost. The results support the hypothesis that complement C5b-9 complexes, in addition to the interaction with the lipid bilayer, may interact with the cytoskeleton of the erythrocyte membrane.  相似文献   

6.
We have studied beta-adrenergic stimulation of cyclic AMP formation in fragmented membranes and in unsealed or resealed ghosts prepared from rat reticulocytes. The maximal rate of isoprenaline-stimulated cyclic AMP formation with saturating MgATP concentrations and in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine was 5-8 nmol/min per ml ghosts and remained constant for at least 15 min. Transition from resealed ghosts to fragmented membranes was associated with a shift of the activation constant (Ka) for (+/-)-isoprenaline from 0.1 to 0.6 microM. THe apparent dissociation constant for propranolol (0.01 microM) remained unchanged. The Ka values for isoprenaline in native reticulocytes and in resealed ghosts were identical. The stimulating effect of NaF on cyclic AMP formation in resealed ghosts reached 15% of maximal beta-adrenergic stimulation. Cyclic AMP formation, both in fragmented membranes and in ghosts, was half-maximally inhibited with Ca2+ concentrations ranging between 0.1 and 1 microM. GTP stimulated isoprenaline-dependent cyclic AMP formation in unsealed ghosts and in fragmented reticulocyte membranes by a factor of 3-5 but did not change the Ka value for isoprenaline. Ka values for the guanylnucleotides in different experiments varied between 0.3 and 2 microM. Ca2+ concentrations up to 4.6 microM reduced the maximal activation by GTP and Gpp(NH)p but did not affect their Ka values. Compared to GTP, maximal activation by Gpp(NH)p was higher in fragmented membranes, but much lower in ghosts. Our results suggest that the native beta-receptor adenylate cyclase system of reticulocytes is more closely approximated in the ghost model than in fragmented membrane preparations. Membrane properties seem to modulate the actions of guanylnucleotides on isoprenaline-dependent cyclic AMP formation in ghosts. Some of these effects are not observed in isolated membranes.  相似文献   

7.
We have studied the differences between erythrocytes and erythrocyte ghosts as target membranes for the study of Sendai virus fusion activity. Fusion was monitored continuously by fluorescence dequenching of R18-labeled virus. Experiments were carried out either with or without virus/target membrane prebinding. When Sendai virus was added directly to a erythrocyte/erythrocyte ghost suspension, fusion was always lower than that obtained when experiments were carried out with virus already bound to the erythrocyte/erythrocyte ghost in the cold, since with virus prebinding fusion can be triggered more rapidly. Although virus binding to both erythrocytes and erythrocyte ghosts was similar, fusion activity was much more pronounced when erythrocyte ghosts were used as target membranes. These observations indicate that intact erythrocytes and erythrocyte ghosts are not equivalent as target membranes for the study of Sendai virus fusion activity. Fusion of Sendai virus with both target membranes was inhibited when erythrocytes or erythrocyte ghosts were pretreated with proteinase K, suggesting a role of target membrane proteins in this process. Treatment of both target membranes with neuraminidase, which removes sialic acid residues (the biological receptors for Sendai virus) greatly reduced viral binding. Interestingly, this treatment had no significant effect on the fusion reaction itself.  相似文献   

8.
The Erythrocyte Ghost Is a Perfect Osmometer   总被引:3,自引:0,他引:3  
The osmotic swelling of intact erythrocytes in hypotonic solutions was measured using microhematocrit tubes, Van Allen tubes, and a calibrated Coulter counter. In agreement with earlier workers the intact cells did not behave as perfect osmometers, the cells swelling less than predicted by the Boyle-van't Hoff law. Erythrocyte ghosts were prepared from fresh intact erythrocytes by one-step hemolysis in 0.25% NaCl at an extremely dilute concentration of cells and the membranes were sealed at 37°. The ghosts were mixed with NaCl solutions of different osmolarities and the MCV (mean cell volume) of the shrunken cells immediately monitored by a calibrated Coulter counter. It was found that the MCV values of the shrunken ghosts were accurately predicted by the Boyle-van't Hoff law. These results indicate that these erythrocyte ghosts behaved as perfect osmometers.  相似文献   

9.
Aggregation of intramembrane particles of human erythrocytes was found to be induced by HVJ (Sendai virus) under conditions which lead to cell fusion. Degree of polyerythrocyte formation was compared under a variety of conditions with extent of cluster formation observed with the same preparations. Both structural changes of the membranes, ie, fusion and clustering of the particles, behaved very similarly under widely different virus-to-cell ratios and over the time course of cell fusion. Furthermore, by inclusion of high concentrations of antispectrin antibodies within the ghosts, inhibition of clustering of intramembrane particles and hindrance of virus-induced cell fusion were found to occur simultaneously. Antibodies by themselves did not induce aggregation of particles under isotonic conditions, whereas particle clustering could be induced under hypotonic conditions at antibody concentrations causing partial cross-linking of spectrin molecules. In conclusion, clustering of intramembrane particles seems to be required for virus-induced fusion of human erythrocytes.  相似文献   

10.
Summary The effects of various conditions in lysing and resealing the red cell membrane on the degree of ghost deformation and orientation in flow are investigated using the flow EPR and spin-label method. The relatively low deformability of the standard ghost, which is lysed and resealed, respectively, in hypotonic and isotonic NaCl-Tris buffer, is markedly enhanced by the presence of Mg-ATP, chlorpromazine, or Ca2+ ion during resealing. The effect is concentration dependent, and there is an optimal level for each treatment. Chlorpromazine and Ca2+ are also effective when added to the resealed ghosts. Mg2+ ion shows an opposite effect reducing the ghost deformability in flow at all concentrations. An isotonic lysis in NH4HCO3 solution with less osmotic stress substantially raises ghost deformability above that of the standard ghosts. These results are interpreted on the basis of a misalignment between the bilayer leaflets that is probably brought about during hypotonic lysis and its recovery to the nearly normal bilayer state by the agents used during or after resealing. The novel finding of deformability enhancing effect of calcium is assumed to be caused by the electrostatic expansion of the inner layer relative to the outer leaflet. The explanations are supported by the resealed ghost shapes observed before and after the treatments; shape recovery from the monoconcave spheroid toward biconcave discoid is observed in most cases concomitantly with improvements of flow characteristics.  相似文献   

11.
The kinetics of the fusion process between erythrocyte ghosts, as induced by Sendal virus, were readily revealed by a simple fluorescence procedure previously employed to characterize the fusion of viruses with biological membranes. The method relies on the relief of fluorescence selfquenching of the membrane-inserted probe octadecyl Rhodamine B chloride (R18) as occurs when labeled membranes fuse with unlabeled counterparts. The kinetics of R18 insertion into ghost membranes, the non-exchangeable properties of the fluorophore and the kinetics, and some characteristics of Sendai virus-induced fusion of ghosts, are described. We propose that the experimental approach may be particularly advantageous to obtain insight into the efficiency and mechanism of a wide range of fusogens, capable of inducing fusion of erythrocyte membranes.  相似文献   

12.
We have studied β-adrenergic stimulation of cyclic AMP formation in fragmented membranes and in unsealed or resealed ghosts prepared from rat reticulocytes. The maximal rate of isoprenaline-stimulated cyclic AMP formation with saturating MgATP concentrations and in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine was 5–8 nmol/min per ml ghosts are remained constant for at least 15 min. Transition from resealed ghosts to fragmented membranes was associated with a shift of the activation constant (Ka) for (±)-isoprenaline from 0.1 to 0.6 μM. The apparent dissociation constant for propranolol (0.01 μM) remained unchanged. The Ka values for isoprenaline in native reticulocytes and in resealed ghosts were identi The stimulating effect of NaF on cyclic AMP formation in resealed ghosts reached 15% of maximal β-adrenergic stimulation. Cyclic AMP formation, both in fragmented membranes and in ghosts, was half-maximally inhibited with Ca2+ concentrations ranging between 0.1 and 1 μM. GTP stimulated iosprenaline-dependent cyclic AMP formation in unsealed ghosts and in fragmented reticulocyte membranes by a factor of 3–5 but did not change the Ka value for isoprenaline. Ka values for the guanylnucleotides in different experiments varied between 0.3 and 2 μM. Ca2+ concentrations up to 4.6 μM reduced the maximal activation by GTP and Gpp(NH)p but did not affect their Ka values. Compared to GTP, maximal activation by Gpp(NH)p was higher in fragmented membranes, but much lower in ghosts. Our results suggest that the native β-receptor adenylate cyclase system of reticulocytes is more closely approximated in the ghost model than in fragmented membrane preparations. Membrane properties seem to modulate the actions of guanylnucleotides on isoprenaline-dependent cyclic AMP formation in ghosts. Some of these effects are not observed in isolated membranes.  相似文献   

13.
We have studied β-adrenergic stimulation of cyclic AMP formation in fragmented membranes and in unsealed or resealed ghosts prepared from rat reticulocytes. The maximal rate of isoprenaline-stimulated cyclic AMP formation with saturating MgATP concentrations and in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine was 5–8 nmol/min per ml ghosts are remained constant for at least 15 min. Transition from resealed ghosts to fragmented membranes was associated with a shift of the activation constant (Ka) for (±)-isoprenaline from 0.1 to 0.6 μM. The apparent dissociation constant for propranolol (0.01 μM) remained unchanged. The Ka values for isoprenaline in native reticulocytes and in resealed ghosts were identi The stimulating effect of NaF on cyclic AMP formation in resealed ghosts reached 15% of maximal β-adrenergic stimulation. Cyclic AMP formation, both in fragmented membranes and in ghosts, was half-maximally inhibited with Ca2+ concentrations ranging between 0.1 and 1 μM. GTP stimulated iosprenaline-dependent cyclic AMP formation in unsealed ghosts and in fragmented reticulocyte membranes by a factor of 3–5 but did not change the Ka value for isoprenaline. Ka values for the guanylnucleotides in different experiments varied between 0.3 and 2 μM. Ca2+ concentrations up to 4.6 μM reduced the maximal activation by GTP and Gpp(NH)p but did not affect their Ka values. Compared to GTP, maximal activation by Gpp(NH)p was higher in fragmented membranes, but much lower in ghosts. Our results suggest that the native β-receptor adenylate cyclase system of reticulocytes is more closely approximated in the ghost model than in fragmented membrane preparations. Membrane properties seem to modulate the actions of guanylnucleotides on isoprenaline-dependent cyclic AMP formation in ghosts. Some of these effects are not observed in isolated membranes.  相似文献   

14.
The responses of hagfish (Myxine glutinosa) and lamprey (Lampetra fluviatilis and Petromyzon marinus) erythrocytes to osmotic swelling in hypoosmotic medium and to acid-base disturbances induced by ammonium chloride prepulse were studied. The erythrocytes of hagfish regulated neither cell volume after osmotic swelling nor intracellular pH after acidification. In contrast, the erythrocytes of lamprey lost potassium and chloride after osmotic swelling, whereby their volume recovered. Furthermore, the red cell pH of lamprey recovered from experimental acidification in a nominally bicarbonate-free medium in the presence of sodium, confirming that the pathway involved is sodium/proton exchange.Abbreviation DMO 5,5-dimethyloxazolidine-2,4-dione  相似文献   

15.
Action of polyethylene glycol on the fusion of human erythrocyte membranes   总被引:5,自引:0,他引:5  
Summary Factors affecting the polyethylene glycol (PEG)-induced membrane fusion were examined. Human erythrocyte membrane ghosts, cytoskeleton-free vesicles budded from erythrocytes, mechanically disrupted erythrocyte vesicles, and recombinant vesicles from glycophorin and egg phosphatidylcholine were used as models. Fusion was monitored by darkfield light microscopy and by freeze-fracture electron microscopy. Osmotic swelling was found necessary for fusion between membrane ghosts following PEG treatment. The sample with the highest fusion percentage was sealed ghosts incubated in hypotonic media after at least 5 min of treatment in <25% PEG. At similar osmolarity, glycerol, dextran and PEG produced progressively more pronounced intramembranous particle (IMP) patching, correlating with their increasing fusion percentages. The patching of IMP preceded cell-cell contact, and occurred without direct PEG-protein interaction. The presence of cytoskeletal elements in small vesicles had no significant effect on fusion, nor on the aggregation of intramembranous particle (IMP) upon PEG treatment. Disrupting the membrane by lysolecithin, dimethylsulfoxide, retinol or mild sonication resulted in the fragmentation of ghosts without an increase in fusion percentage. The purity of the commercial PEG used had no apparent effect on fusion. We concluded that the key steps in PEG-induced fusion of cell membrane are the creation of IMP-free zones, and the osmotic swelling of cells after the formation of bilayer contacts during the PEG treatment. Cell cytoskeleton affects PEG-induced fusion only to the extent of affecting IMP patching.  相似文献   

16.
Three opposing pathways are proposed for the release of malaria parasites from infected erythrocytes: coordinated rupture of the two membranes surrounding mature parasites; fusion of erythrocyte and parasitophorus vacuolar membranes (PVM); and liberation of parasites enclosed within the vacuole from the erythrocyte followed by PVM disintegration. Rupture by cell swelling should yield erythrocyte ghosts; membrane fusion is inhibited by inner-leaflet amphiphiles of positive intrinsic curvature, which contrariwise promote membrane rupture; and without protease inhibitors, parasites would leave erythrocytes packed within the vacuole. Therefore, we visualized erythrocytes releasing P. falciparum using fluorescent microscopy of differentially labeled membranes. Release did not yield erythrocyte ghosts, positive-curvature amphiphiles did not inhibit release but promoted it, and release of packed merozoites was shown to be an artifact. Instead, two sequential morphological stages preceded a convulsive rupture of membranes and rapid radial discharge of separated merozoites, leaving segregated internal membrane fragments and plasma membrane vesicles or blebs at the sites of parasite egress. These results, together with the modulation of release by osmotic stress, suggest a pathway of parasite release that features a biochemically altered erythrocyte membrane that folds after pressure-driven rupture of membranes.  相似文献   

17.
Absorption and fluorescence measurements of purified hypericin (HY) were made in various media. Photosensitization of two aqueous systems was investigated: resealed red blood cell membranes (ghosts) and hen lysozyme (Lys). Solubilization of HY by ghost membranes was shown by means of diffuse reflectance spectroscopy. Visible light irradiation of the ghosts incorporating HY led to lipid peroxidation with evidence of singlet oxygen involvement. A binding model applicable for insoluble ligands is indicative of strong HY binding to HSA. The HY-HSA complex photosensitized inactivation of Lys. The pseudo-first-order reaction kinetics with protection by azide ion are consistent with a Type II mechanism mediated by singlet oxygen. The results are discussed in the context of the HY photodynamic and antiretroviral activities.  相似文献   

18.
The effects of systematic variations in the preparative procedures on the membrane viscoelastic properties of resealed human red blood cell ghosts have been investigated. Ghosts, prepared by hypotonic lysis at 0 degrees C and resealing at 37 degrees C, were subjected to: measurement of the time constant for extensional recovery (tc); measurement of the membrane shear elastic modulus (mu) via three separate techniques; determination of the membrane viscosity (eta m) via a cone-plate Rheoscope. Membrane viscosity was also determined as eta m = mu X tc. Compared to intact cells, ghosts had shorter tc, regardless of their residual hemoglobin concentration (up to 21.6 g/dl). However, prolonged exposure to hypotonic media did increase their recovery time toward the intact cell value. The shear elastic modulus, as judged by micropipette aspiration of membrane tongues (mu p), was similar for all ghosts and intact cells. This result, taken with the tc data, indicates that ghosts have reduced membrane viscosity. Rheoscopic analysis also showed that eta m was reduced for ghosts, with the degree of reduction (approx. 50%) agreeing well with that estimated by the product mu p X tc. However, flow channel and pipette elongation estimates indicated that the ghost membrane elastic modulus was somewhat elevated compared to intact cells. We conclude that: ghosts have reduced membrane viscosity; ghosts have membrane rigidities close to intact cells, except possibly when the membrane is subjected to very large strains; the reduction in eta m is not directly related to the loss of hemoglobin; prolonged exposure of ghosts to low-ionic strength media increases the membrane viscosity toward its initial cellular level. These data indicate that the mechanical characteristics of ghost membranes can be varied by changing the methods of preparation and thus have potential application to further studies of the structural determinants of red cell membrane viscoelasticity.  相似文献   

19.
用荧光漂白恢复法测定了血红蛋白对红细胞膜脂质分子侧向扩散的限制作用.血红蛋白主要是通过和内侧膜脂质的结合而产生影响的,pH6及PH7.7时都显示出效应的存在.和膜结合较强的高铁血红蛋白,表现出对膜脂质侧向扩散亦有较大的限制作用.  相似文献   

20.
Phlorizin at 2 X 10(-4) M inhibited Na+ and Rb+-activated ATPase activities in human red cell membranes by 43%. It inhibited the 86Rb uptake activity of erythrocytes by only 15%. 86Rb uptake into resealed ghosts was inhibited strongly when phlorizin and ATP were preloaded in the ghosts before resealing. Na,K-ATPase activity in the resealed ghosts was also inhibited in the presence of phlorizin inside but not outside the ghosts. These findings suggested that the phlorizin site is located inside the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号