首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In eucaryotic organisms, responses to external signals are mediated by a repertoire of intracellular signalling pathways that ultimately bring about the activation/inactivation of protein kinases and/or protein phosphatases. Until relatively recently, little thought had been given to the intracellular distribution of the components of these signalling pathways. However, experimental evidence from a diverse range of organisms indicates that rather than being freely distributed, many of the protein components of signalling cascades show a significant degree of spatial organisation. Here, we briefly review the roles of ‘anchor’, ‘scaffold’ and ‘adaptor’ proteins in the organisation and functioning of intracellular signalling pathways. We then consider some of the parallel distributed processing capacities of these adaptive systems. We focus on signalling proteins-both as individual ‘devices’ (agents) and as ‘networks’ (ecologies) of parallel processes. Signalling proteins are described as ‘smart thermodynamic machines’ which satisfy ‘gluing’ (functorial) roles in the information economy of the cell. This combines two information-processing views of signalling proteins. Individually, they show ‘cognitive’ capacities and collectively they integrate (cohere) cellular processes. We exploit these views by drawing comparisons between signalling proteins and verbs. This text/dialogical metaphor also helps refine our view of signalling proteins as context-sensitive information processing agents.  相似文献   

2.
Interaction Proteomics   总被引:1,自引:0,他引:1  
The term proteome is traditionally associated with the identification of a large number of proteins within complex mixtures originating from a given organelle, cell or even organism. Current proteome investigations are basically focused on two major areas, expression proteomics and functional proteomics. Both approaches rely on the fractionation of protein mixtures essentially by two-dimensional polyacrylamide gel electrophoresis (2D-gel) and the identification of individual protein bands by mass spectrometric techniques (2D-MS). Functional proteomics approaches are basically addressing two main targets, the elucidation of the biological function of unknown proteins and the definition of cellular mechanisms at the molecular level. In the cell many processes are governed not only by the relative abundance of proteins but also by rapid and transient regulation of activity, association and localization of proteins and protein complexes. The association of an unknown protein with partners belonging to a specific protein complex involved in a particular process would then be strongly suggestive of its biological function. The identification of interacting proteins in stable complexes in a cellular system is essentially achieved by affinity-based procedures. Different strategies relying on this simple concept have been developed and a brief overview of the main approaches presently used in functional proteomics studies is described.  相似文献   

3.
Rapidly developing postgenome research has made proteins an attractive target for biological analysis. The well-established term of proteome is defined as the complete set of proteins expressed in a given cell, tissue or organism. Unlike the genome, a proteome is rapidly changing as it tends to adapt to microenvironmental signals. The systematic analysis of the proteome at a given time and state is referred to as proteomics. This technique provides information on the molecular and cellular mechanisms that regulate physiology and pathophysiology of the cell. Applications of proteome profiling in radiation research are increasing. However, the large-scale proteomics data sets generated need to be integrated into other fields of radiation biology to facilitate the interpretation of radiation-induced cellular and tissue effects. The aim of this review is to introduce the most recent developments in the field of radiation proteomics.  相似文献   

4.
Global protein identification through current proteomics methods typically depends on the availability of sequenced genomes. In spite of increasingly high throughput sequencing technologies, this information is not available for every microorganism and rarely available for entire microbial communities. Nevertheless, the protein-level homology that exists between related bacteria makes it possible to extract biological information from the proteome of an organism or microbial community by using the genomic sequences of a near neighbor organism. Here, we demonstrate a trans-organism search strategy for determining the extent to which near-neighbor genome sequences can be applied to identify proteins in unsequenced environmental isolates. In proof of concept testing, we found that within a CLUSTAL W distance of 0.089, near-neighbor genomes successfully identified a high percentage of proteins within an organism. Application of this strategy to characterize environmental bacterial isolates lacking sequenced genomes, but having 16S rDNA sequence similarity to Shewanella resulted in the identification of 300-500 proteins in each strain. The majority of identified pathways mapped to core processes, as well as to processes unique to the Shewanellae, in particular to the presence of c-type cytochromes. Examples of core functional categories include energy metabolism, protein and nucleotide synthesis and cofactor biosynthesis, allowing classification of bacteria by observation of conserved processes. Additionally, within these core functionalities, we observed proteins involved in the alternative lactate utilization pathway, recently described in Shewanella.  相似文献   

5.
The transitions between the different helical conformations of DNA depend on the base sequence and the ambient conditions such as humidity and counter-ion concentration. In this study energy minimization techniques have been used to locate water molecule sites around nucleotides especially those which form hydrogen bonds between two or more nucleotide atoms and thus form solvent mediated bridges. We have studied several sequences and find that those which are known not to exist in the low hydration ‘A’ form have very similar number of bridging sites in both ‘A’ and ‘B’ conformations. Those sequences which are found in the ‘A’ conformation have considerably more bridging sites in this low hydration form than in the ‘B’ conformation. Sequence related solvent effects for a given conformation have also been analysed.  相似文献   

6.
Biodiversity is a term that comprises the appearance, structure and function of all levels of biological organization, including genes, species and ecosystems. The vast majority of measures of biodiversity (usually termed ‘diversity indices’) considers only number, proportion and distribution of species which belong to a specified group and exist in a defined area or ecosystem. Genetic diversity as a part of biodiversity within species (or populations) was either not regarded in this respect or was treated (by geneticists) as a separate entity of diversity quantified with separate measures. Little attention has been given to the integration of both types of diversity, within and among species, in a single measurement (termed ‘transspecific’ diversity). In order to attain this integration on a general basis, an operational trait concept is developed which allows the determination of variation in traits observable in members not only of the same species but also of different species. The concept rests on methods of investigation that can be adapted to a broader range of organisms without modification of their characteristics. Once a trait is specified on this basis, any meaningful measure of diversity can be applied to assess biodiversity across levels of biological organization. The utility of the concept is demonstrated by application to the results of an earlier study on associations between species and genetic diversity in a forest tree community. Attributes of isozymes which are visible in electrophoresis are used as a transspecific genetic trait.  相似文献   

7.
R T Dean 《FEBS letters》1987,220(2):278-282
I propose that limited free radical attack upon proteins, occurring continuously in cells, creates new N-termini (notably aspartate and glutamate) which render the proteins more susceptible to proteolysis by the ubiquitin conjugation system. I suggest that these reactions are a significant part of the previously described ‘N-end’ and ‘PEST’ rules, which indicate amino acid termini or sequences which tend to dictate short protein half-lives. I also argue that the N-end rule may apply to sequestered intracellular sites, such as mitochondria, these also being sites of radical generation.  相似文献   

8.
3-D attitude representation of human joints: A standardization proposal   总被引:1,自引:0,他引:1  
In view of the singularities, asymmetries and other adverse properties of existing, three-dimensional definitions for joint and segment angles, the present paper proposes a new convention for unambiguous and easily interpretable, 3-D joint angles, based on the concept of the attitude ‘vector’ as derived from Euler's theorem. The suggested standard can be easily explained to non-mathematically trained clinicians, is readily implemented in software, and can be simply related to classical Cardanic/Eulerian angles. For ‘planar’ rotations about a coordinate system's axes, the proposed convention coincides with the Cardanic convention.

The attitude vector dispenses with the ‘gimbal-lock’ and non-orthogonality disadvantages of Cardanic/Eulerian conventions; therefore, its components have better metrical properties, and they are less sensitive to measurement errors and to coordinate system uncertainties than Cardanic/Eulerian angles.

A sensitivity analysis and a physical interpretation of the proposed standard are given, and some experimental results that demonstrate its advantages.  相似文献   


9.
10.
The term ‘essential fatty acid’ is ambiguous and inappropriately inclusive or exclusive of many polyunsaturated fatty acids. When applied most rigidly to linoleate and -linolenate, this term excludes the now well accepted but conditional dietary need for two long chain polyunsaturates (arachidonate and docosahexaenoate) during infancy. In addition, because of the concomitant absence of dietary -linolenate, essential fatty acid deficiency is a seriously flawed model that has probably led to significantly overestimating linoleate requirements. Linoleate and -linolenate are more rapidly β-oxidized and less easily replaced in tissue lipids than the common ‘non-essential’ fatty acids (palmitate, stearate, oleate). Carbon from linoleate and -linolenate is recycled into palmitate and cholesterol in amounts frequently exceeding that used to make long chain polyunsaturates. These observations represent several problems with the concept of ‘essential fatty acid’, a term that connotes a more protected and important fatty acid than those which can be made endogenously. The metabolism of essential and non-essential fatty acids is clearly much more interconnected than previously understood. Replacing the term ‘essential fatty acid’ by existing but less biased terminology, i.e. polyunsaturates, ω3 or ω6 polyunsaturates, or naming the individual fatty acid(s) in question, would improve clarity and would potentially promote broader exploration of the functional and health attributes of polyunsaturated fatty acids.  相似文献   

11.
In order to investigate the pharmacological basis of ‘Yang-invigorating’ action, the effect of oral treatment with the methanolic extract of ‘Yang-invigorating’ herbs on ATP-generation capacity was examined, using heart homogenates prepared from herb-pretreated mice. Tonifying (i.e., health-promoting) herbs of other functional categories were also included for comparison. The results indicated that ‘Yang-invigorating’ Chinese tonifying herbs could invariably enhance myocardial ATP-generation capacity, with the extent of stimulation varying among the herbs. In contrast, ‘Yin-nourishing’ herbs either did not stimulate or even decreased myocardial ATP-generation capacity. While ‘Qi-invigorating’ herbs produced variable effects on myocardial ATP-generation capacity, most of the ‘blood-enriching’ herbs did not cause any significant changes. The results obtained from studies using myocardial mitochondrial fractions isolated from herb-pretreated mice suggest that ‘Yang-invigorating’ herbs might speed up ATP generation by increasing mitochondrial electron transport. The ensemble of results has provided evidence for the first time to support the pharmacological basis of ‘Yang invigoration’ in Chinese medicine.  相似文献   

12.
Both biological populations and fault tolerant evolvable hardware systems need to respond rapidly to changes in their dynamic environmental niche. Such changes can be caused by a disturbance event or fault occurring. Here I examine evolutionary algorithms, based on eukaryote sexual selection, which allow different levels of recombination of ‘genes’. The differences in recombination are based on ‘genes’ related to the optimisation process being either linked on a single ‘chromosome’ or being present on separate ‘chromosomes’. When genes are present on separate chromosomes the initial rate of evolution of a randomly generated population is faster than if the genes are linked on the same chromosome. However, when the optimisation problem is changed during the optimisation period, indicating a disturbance or fault occurring, the initial fitness of the linked population is higher and the rate of optimisation immediately after the disturbance is more rapid than for the non-linked populations. The genotypic and phenotypic diversity of the linked populations are also significantly higher immediately prior to the disturbance event. I propose this diversity provides the necessary variation to allow more rapid evolution following a disturbance. The results demonstrate the importance of population diversity in response to change, supporting theory from conservation biology.  相似文献   

13.
Two-dimensional polyacrylamide gel electrophoresis revealed 10 polymorphic proteins in seed embryos of 29 cultivated rices (Oryza sativa L.) including 16 japonica cultivars, three so-called ‘Javanica’ ones and 10 indica ones. We attempted to use these polymorphic proteins to identify rice subspecies by scoring the polymorphisms. Since all japonica cultivars examined showed the same pattern of protein spots, we considered it to be a standard one with a score of zero, and the protein polymorphisms of other cultivars were given scores of 0.0, 0.5 or 1.0 according to spot density. This scoring method gave characteristic scores for indica and ‘Javanica’ cultivars, i.e. typical japonica cultivars selected as standards presumed the score of 0.0 whereas ‘Javanica’ cultivars and indica ones had the scores of 2.5–4.0 and of 5.0–8.0, respectively. By using this scoring method and the subspecies-specific proteins previously reported, 19 cultivars of unknown subspecies were classified as three indica cultivars and 16 japonica ones including four so-called ‘Javanica’ ones. This scoring method also detected a difference between the perennial wild rice Oryza rufipogon and the annual one O. nivara at the protein level.  相似文献   

14.
A method for estimating the proportions of ‘A’ and ‘B’ polymorphs comprising a sample of ‘C’ type starch is proposed which uses established experimental techniques with commercially available spreadsheet and X-ray analysis software. Waxy maize, potato and smooth pea starches were used to provide X-ray diffraction patterns characteristic of the ‘A’, ‘B’ and ‘C’ starch polymorphs. Samples of amorphous starches were also prepared. The method initially involved subtraction of the amorphous phase and instrumental background from the X-ray diffraction patterns of each starch sample using the spreadsheet program, Lotus 1-2-3. The remainder of the pattern, representing the crystalline portion of the starch sample, was then analysed by profile fitting to elucidate the positions and areas of individual diffraction peaks. The ratio of the total peak area to the areas under peaks characteristic of ‘A’ and ‘B’ type starches, respectively, were used to calculate the relative proportions of these polymorphs in smooth pea starch. These proportions were found to be 56±3% ‘A’ polymorph to 44±3% ‘B’ polymorph. A ‘C’ type pattern was constructed by using Lotus 1-2-3 to combine diffraction patterns from the crystalline portions of ‘A’ and ‘B’ type starches in the proportions given above. Polymorph patterns were obtained by manipulation of the diffraction patterns from the crystalline portions of starches using Lotus 1-2-3. An ‘A’ type pattern was obtained by subtraction of a ‘B’ type pattern from that of a ‘C’ type. Similarly, a ‘B’ type pattern was obtained by subtraction of an ‘A’ type pattern from that of a ‘C’ type.  相似文献   

15.
Goody RS 《Biophysical chemistry》2003,100(1-3):535-544
A large number of GTP/GDP binding proteins, which in general have intrinsic and/or stimulatable GTPase activity, have been identified in recent years and are involved in a wide range of cellular regulatory and signal transducing processes. A common property of these proteins is that they exist in what is generally described as an active form when GTP is bound and an inactive (resting) form when GDP is present. Thus, the intrinsic or stimulated GTPase activity of these ‘enzymes’ serves to turn off a signal or to terminate a regulated process. It has been suggested that these proteins, together with ATPases whose prime function is to convert the free energy of ATP hydrolysis into another form of energy or into energy-requiring chemical reactions should be grouped together under the heading of ‘energyases’. In this article, this suggestion is examined from the point of view of identifying the role of the free-energy of hydrolysis of GTP in the signal-transducing or regulatory process of the GTPases. It is concluded that there is a qualitative difference between ATPases and classical GTPases, in the sense that a quantitative relationship between the free-energy of GTP hydrolysis and the appearance of this energy in a different form cannot be directly defined. The significance of the high free energy of hydrolysis is that it allows efficient transition from the active to the inactive state of GTPases in spite of the tendency of the strong interaction of the GTP-bound form with a partner molecule (‘effector’), an essential feature of their mode of action, to stabilize the GTP-bound form.  相似文献   

16.
17.
18.
Allocation, plasticity and allometry in plants   总被引:35,自引:0,他引:35  
Allocation is one of the central concepts in modern ecology, providing the basis for different strategies. Allocation in plants has been conceptualized as a proportional or ratio-driven process (‘partitioning’). In this view, a plant has a given amount of resources at any point in time and it allocates these resources to different structures. But many plant ecological processes are better understood in terms of growth and size than in terms of time. In an allometric perspective, allocation is seen as a size-dependent process: allometry is the quantitative relationship between growth and allocation. Therefore most questions of allocation should be posed allometrically, not as ratios or proportions. Plants evolve allometric patterns in response to numerous selection pressures and constraints, and these patterns explain many behaviours of plant populations.

In the allometric view, plasticity in allocation can be understood as a change in a plant's allometric trajectory in response to the environment. Some allocation patterns show relatively fixed allometric trajectories, varying in different environments primarily in the speed at which the trajectory is travelled, whereas other allocation patterns show great flexibility in their behaviour at a given size. Because plant growth is often indeterminate and its rate highly influenced by environmental conditions, ‘plasticity in size’ is not a meaningful concept. We need a new way to classify, describe and analyze plant allocation and plasticity because the concepts ‘trait’ and ‘plasticity’ are too broad. Three degrees of plasticity can be distinguished: (1) allometric growth (‘apparent plasticity’), (2) modular proliferation and local physiological adaptation, and (3) integrated plastic responses. Plasticity, which has evolved because it increases individual fitness, can be a disadvantage in plant production systems, where we want to optimize population, not individual, performance.  相似文献   


19.
Many hermaphrodite flowering plants avoid self-fertilization through genetic systems of self-incompatibility (SI). SI allows a plant to recognize and to reject self or self-related pollen, thereby preserving its ovules for outcrossing. Genes situated at the S-locus encode the ‘male’ (pollen) and ‘female’ (pistil) recognition determinants of SI. In sporophytic SI (SSI) the male determinant is expressed in the diploid anther, therefore haploid pollen grains behave with a diploid S phenotype. In Brassica, the male and the female determinants of SSI have been identified as a peptide ligand and its cognate receptor, respectively, and recent studies have identified downstream signalling molecules involved in pollen rejection. It now needs to be established whether the Brassica mechanism is universal in species with SSI, or unique to the Brassicaceae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号