首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The allometric relationships between canine base area, first molar and summed molar crown area, and the glabella–opisthocranion distance, and the direct allometric relationships between canine and molar size have been established in five primate taxa. Separate sex and combined sex ‘intraspecific’, and ‘interspecific’ regression and ‘best fit’ allometry coefficients were computed. This analysis showed that for any increase in glabella–opisthocranion length, the rate of increase in canine size exceeds the rate of increase in molar area, and ‘best fit’ solutions indicate that canine base area is positively allometric when related directly to molar crown area. These results were compared with data available for the ‘gracile’ australopithecine, A. africanus, and two ‘robust’ australopithecine taxa, A. boisei and A. robustus. The differences in canine and molar size which occur between the ‘gracile’ taxon and the two ‘robust’ taxa do not correspond to any of the trends in the comparative allometric models. Data on glabella–opisthocranion length for the fossils, meagre though they are, show that while the proportional increase in molar crown area between the taxa corresponds to comparative allometry models, the reduced canine size in the ‘robust’ taxa is against comparative allometric trends. These results indicate that, at least in terms of canine/molar proportions, the differences between the ‘gracile’ and ‘robust’ australopithecines are not merely allometric and may indicate significant dietary or behavioural differences.  相似文献   

2.
金丝猴牙齿与体重间的相关性研究   总被引:7,自引:0,他引:7  
对金丝猴牙齿与体重间关系的研究结果表明,在雄性中,无论是线性还是面积与颅长之间的相关关系均较雌性的更为紧密。而且,随着体重的增加,雄性牙齿的近中远中长(M/D)也比雌性的增长较快。在上、下颌中,上颌牙齿与颅长的关系表现出更强的相联性。与其他灵长类相比较,金丝猴在取食和咀嚼过程中主要利用颊齿;大的个体具有大的犬齿及一定比例的臼齿面积和齿弓(牙合)面面积;上齿弓(牙合)面面积大于下齿弓(牙合)面面积。也就是说上齿弓提供了比下齿弓更大的咀嚼面积。金丝猴牙齿与体重间的关系位于猴类和人猿类之间,更接近于大猩猩(Gorilla)、疣猴(Colobus)和猕猴。  相似文献   

3.
Comparative studies have convincingly demonstrated that the pattern and timing of tooth emergence are highly correlated with life-history variables and brain size. Conversely, a firm relationship between molar formation time and life-history variables has not yet been established. It seems counterintuitive that one aspect of dental development should be correlated with life-history variables, whereas the other should not. In order to shed light on this apparent discrepancy this study analyzed all data on primate molar crown formations available in the published literature in relation to life-history variables, brain size, and female body mass. Crown formation times were found to be particularly highly correlated with both female body mass and brain size. Species that depart from the overall brain/body allometry by being relatively large-bodied, e.g., Gorilla gorilla and later Theropithecus oswaldi, also have shorter molar crown formation times than expected. The reverse is not found for species that depart from the overall brain/body allometry due to their larger brains, i.e., Homo sapiens. This finding is interpreted within an evolutionary and ecological framework. Specifically, by focusing on ecological commonalities, a scenario is proposed which may allow predictions to be made about the evolutionary history of other extinct primates also. If confirmed in future studies, crown formation time may again become a powerful tool in evolutionary enquiry.  相似文献   

4.
We examined how maxillary molar dimensions change with body and skull size estimates among 54 species of living and subfossil strepsirrhine primates. Strepsirrhine maxillary molar areas tend to scale with negative allometry, or possibly isometry, relative to body mass. This observation supports several previous scaling analyses showing that primate molar areas scale at or slightly below geometric similarity relative to body mass. Strepsirrhine molar areas do not change relative to body mass(0.75), as predicted by the metabolic scaling hypothesis. Relative to basicranial length, maxillary molar areas tend to scale with positive allometry. Previous claims that primate molar areas scale with positive allometry relative to body mass appear to rest on the incorrect assumption that skull dimensions scale isometrically with body mass. We identified specific factors that help us to better understand these observed scaling patterns. Lorisiform and lemuriform maxillary molar scaling patterns did not differ significantly, suggesting that the two infraorders had little independent influence on strepsirrhine scaling patterns. Contrary to many previous studies of primate dental allometry, we found little evidence for significant differences in molar area scaling patterns among frugivorous, folivorous, and insectivorous groups. We were able to distinguish folivorous species from frugivorous and insectivorous taxa by comparing M1 lengths and widths. Folivores tend to have a mesiodistally elongated M1 for a given buccolingual M1 width when compared to the other two dietary groups. It has recently been shown that brain mass has a strong influence on primate dental eruption rates. We extended this comparison to relative maxillary molar sizes, but found that brain mass appears to have little influence on the size of strepsirrhine molars. Alternatively, we observed a strong correlation between the relative size of the facial skull and relative molar areas among strepsirrhines. We hypothesize that this association may be underlain by a partial sharing of the patterning of development between molar and facial skull elements.  相似文献   

5.
The methods for determining the taxonomic significance of differences in relative canine size in hominids are discussed. Allometric coefficients are calculated for canine size/body size and canine size/molar size relationships in five primate taxa. The results of coefficients determined for separate sex, combined sex and “interspecific” slopes indicate that when body size increases, the rate of increase in canine size is as great as and, in many cases, greater than the rate of increase in molar size. Thus, the pattern of negative canine allometry determined from samples of fossil hominids by Wolpoff (1978) reflects the choice of hominid sample, and should not be used as a general criterion for deciding whether differences in canine/molar dental proportions are size-related phenomena.  相似文献   

6.
Rensch's rule states that sexual size dimorphism (SSD) increases with body size in taxa where males are larger, and decreases when females are larger. The dominant explanation for the trend is currently that competitive advantage for males is greater in larger individuals, whereas female size is constrained by the energetics of rearing offspring. This rule holds for a variety of vertebrate taxa, and opposing trends are rare. We examine the allometry of SSD within the Musteloidea and demonstrate a hypo‐allometry contrary to Rensch's rule, with lower SSD associated with larger body size. We provide evidence that feeding ecology is involved. Where diet promotes group‐living, the optimal strategy for the males of larger species is often not to attempt to defend access to multiple females, obviating any competitive advantage of relatively greater size. We conclude that the effect of feeding ecology on mating systems may be a hitherto neglected factor explaining variation in SSD.  相似文献   

7.
Tooth crown morphology plays a central role in hominin systematics, but the removal of the original outer enamel surface by dental attrition often eliminates from consideration the type of detailed crown morphology that has been shown to discriminate among hominin taxa. This reduces the size of samples available for study. The enamel-dentine junction (EDJ) is the developmental precursor and primary contributor to the morphology of the unworn outer enamel surface, and its morphology is only affected after considerable attrition. In this paper, we explore whether the form of the EDJ can be used to distinguish between the mandibular molars of two southern African fossil hominins: Paranthropus (or Australopithecus) robustus and Australopithecus africanus. After micro-computed tomographic scanning the molar sample, we made high-resolution images of the EDJ and used geometric morphometrics to compare EDJ shape differences between species, in addition to documenting metameric variation along the molar row within each species. Landmarks were collected along the marginal ridge that runs between adjacent dentine horns and around the circumference of the cervix. Our results suggest that the morphology of the EDJ can distinguish lower molars of these southern African hominins, and it can discriminate first, second, and third molars within each taxon. These results confirm previous findings that the EDJ preserves taxonomically valuable shape information in worn teeth. Mean differences in EDJ shape, in particular dentine horn height, crown height, and cervix shape, are more marked between adjacent molars within each taxon than for the same molar between the two taxa.  相似文献   

8.
Gould has predicted that in rapidly dwarfed lineages the postcanine teeth exhibit a different scaling pattern than is the normal interspecific trend. His prediction of strong negative allometry has not been frequently tested in quantitative detail. Here we present results of scaling analyses of the molar teeth in African pygmies compared with other Africans of larger size and in Philippine pygmies compared with Filipinos of larger size. We find a pattern of strong negative allometry of tooth size to skull and body size in both these comparisons. This scaling pattern is explained by recourse to the developmental bases (known or inferred) of dwarfing in these populations. Body size decrease is related to low levels of the growth control substance insulin-like growth factor I (IGF-I), which does not appear to affect the size of the dentition. The implications of such developmental information for our understanding of allometric patterns in general, and dwarfing events in particular, are discussed.  相似文献   

9.
The aim was to study as to how biometric and life‐history traits of endemic lacertids in the Canary Islands (genus Gallotia) may have evolved, and possible factors affecting the diversification process of this taxon on successively appearing islands have been deduced. To that end, comparative analyses of sexual dimorphism and scaling of different body, head and life‐history traits to body size in 10 species/subspecies of Gallotia have been carried out. Both Felsenstein's independent contrasts and Huey and Bennett's ‘minimum evolution’ analyses show that male and female snout‐vent length (SVL) changed proportionally (sexual size dimorphism not changing with body size) throughout the evolution of these lizards and all within‐sex biometric traits have changed proportionally to SVL. Life‐history traits (size at sexual maturity, clutch size, hatchling SVL and mass, and life span) are highly correlated with adult female body size, the first two being the only traits with a positive allometry to female SVL. These results, together with the finding that the slope of hatchling SVL to female SVL regression was lower than that of SVL at maturity to female SVL, indicates that larger females reach maturity at a larger size, have larger clutches and, at the same time, have relatively smaller hatchlings than smaller females. There was no significant correlation between any pair of life‐history traits after statistically removing the effect of body size. As most traits changed proportionally to SVL, the major evolutionary change has been that of body size (a ca. threefold change between the largest and the smallest species), that is suggested to be the effect of variable ecological conditions faced by founder lizards in each island.  相似文献   

10.
Although fecundity selection is ubiquitous, in an overwhelming majority of animal lineages, small species produce smaller number of offspring per clutch. In this context, egg, hatchling and neonate sizes are absolutely larger, but smaller relative to adult body size in larger species. The evolutionary causes of this widespread phenomenon are not fully explored. The negative offspring size allometry can result from processes limiting maximal egg/offspring size forcing larger species to produce relatively smaller offspring (‘upper limit’), or from a limit on minimal egg/offspring size forcing smaller species to produce relatively larger offspring (‘lower limit’). Several reptile lineages have invariant clutch sizes, where females always lay either one or two eggs per clutch. These lineages offer an interesting perspective on the general evolutionary forces driving negative offspring size allometry, because an important selective factor, fecundity selection in a single clutch, is eliminated here. Under the upper limit hypotheses, large offspring should be selected against in lineages with invariant clutch sizes as well, and these lineages should therefore exhibit the same, or shallower, offspring size allometry as lineages with variable clutch size. On the other hand, the lower limit hypotheses would allow lineages with invariant clutch sizes to have steeper offspring size allometries. Using an extensive data set on the hatchling and female sizes of > 1800 species of squamates, we document that negative offspring size allometry is widespread in lizards and snakes with variable clutch sizes and that some lineages with invariant clutch sizes have unusually steep offspring size allometries. These findings suggest that the negative offspring size allometry is driven by a constraint on minimal offspring size, which scales with a negative allometry.  相似文献   

11.

Key message

Congeneric species showed similar stem and crown allometry, but differed in crown dimensions indicating that crown size is adaptive and variable despite mechanical restrictions.

Abstract

Morphological adaptations favor differential use of the space in tropical trees, but the variability in stem and crown allometry can be constrained by phylogenetic and mechanical factors. In addition, dioecious species show marked differences in their energy requirements related to reproduction, but little information is available about the role of shape and allometry on differential acquisition of energy between the sexes. We studied the stem and crown dimensions of congeneric dioecious trees to determine if there are: (i) differences in the allometry between the sexes, (ii) different average sizes among sympatric species, and (iii) differences in stem and crown allometry between sympatric and allopatric species. Two pairs of sympatric Virola (Myristicaceae) in Brazil and Costa Rica were studied. SMA regression models were used to investigate allometric relationships between diameter at breast height (DBH) and tree height, and between DBH and crown volume (CV). No sexual dimorphism in stem and crown morphology was observed in this study, indicating that differences in resource allocation for reproduction between the sexes do not impact the stem and crown structure in these species. Overall, low variability among the species was observed. Only one species differed in stem allometry and none differed in crown allometry. CV differed between sympatric species. Stem and crown allometry are related to structural stability and our results support similar mechanical restriction for these species. The ecological significance of differences in CV among canopy species remains to be explored.
  相似文献   

12.
Differences in body size between conspecific sexes may incur differences in the relative size and/or shape of load-bearing joints, potentially confounding our understanding of variation in the fossil record. More specifically, larger males may experience relatively greater limb joint stress levels than females, unless an increase in weight-related forces is compensated for by positive allometry of articular surface areas. This study examines variation in limb joint size dimorphism (JSD) among extant catarrhines to: 1) determine whether taxa exhibit JSD beyond that expected to simply maintain geometric similarity between sexes, and 2) test whether taxa differ in JSD (relative to body size dimorphism) with respect to differences in limb use and/or phylogeny. "Joint size" was quantified for the distal humerus and distal femur of 25 taxa. Analysis of variance was used to test for differences between sexes (in joint size ratios) and among taxa (in patterns of dimorphism). Multiple regression was used to examine differences in JSD among taxa after accounting for variation in body size dimorphism (BSD) and body size. Although degrees of humeral and femoral JSD tend to be the same within species, interspecific variation exists in the extent to which both joints are dimorphic relative to BSD. While most cercopithecoids exhibit relatively high degrees of JSD (i.e., positive allometry), nonhuman hominoids exhibit degrees of JSD closer to isometry. These results may reflect a fundamental distinction between cercopithecoids and hominoids in joint design. Overall, the results make more sense (from a mechanical standpoint) when adjustments to BSD are made to account for the larger effective female body mass associated with bearing offspring. In contrast to other hominoids, modern humans exhibit relatively high JSD in both the knee and elbow (despite lack of forelimb use in weight support). Estimates of BSD based on fossil limb bones will vary according to the extant analogue chosen for comparison.  相似文献   

13.
Body weight distributions of European Hymenoptera   总被引:2,自引:0,他引:2  
WernerUlrich 《Oikos》2006,114(3):518-528
Species number–body weight distributions are generally thought to be skewed to the right. Hence it is assumed that the number of relatively small species is larger than the number of relatively large species. While this pattern is well documented in vertebrates, comparative studies on larger invertebrate taxa are still scarce. Here I show that the weight distributions of European Hymenoptera (based on 12 601 species body weight data compiled from major catalogues) do not exhibit a general trend towards right skewed species–body weight distributions. Skewness did not depend on the number of species per taxon. Species richness peaked at intermediate body weights irrespective of taxonomic level. Kernel density analysis revealed that hymenopteran taxa had between one and four peaks in their size distributions with larger taxa having fewer peaks. Within genus variability in body weight was allometrically related to mean body weight (σ21.81) in line with a proportional rescaling pattern. These results call for a rethinking about the generality of current vertebrate centred models of body size evolution.  相似文献   

14.
While theoretical allometric models postulate universal scaling exponents, empirical relationships between tree dimensions show marked variability that reflects changes in the biomass allocation pattern. As growth of the various tree compartments may be controlled by different functions, it is hypothesized that they may respond differently to factors of variation, resulting in variable tree morphologies and potentially in trade-offs between allometric relationships. We explore the variability of tree stem and crown allometries using a dataset of 1,729 trees located in an undisturbed wet evergreen forest of the Western Ghats, India. We specifically test whether species adult stature, terrain slope, tree size and crown light exposure affect the relationships between stem diameter and stem height (stem allometry), and between stem diameter and crown width, crown area and crown volume (crown allometries). Results show that both stem and crown allometries are subject to variations in relation to both endogenous (tree size, species adult stature) and exogenous (terrain slope, crown light exposure) factors. Stem allometry appears to be more affected by these factors than are crown allometries, including the stem diameter–crown volume relationship, which proved to be particularly stable. Our results support the idea that height is a prevailing adjustment factor for a tree facing variable growth (notably light) conditions, while stem diameter–crown volume allometry responds more to internal metabolic constraints. We ultimately discuss the various sources of variability in the stem and crown allometries of tropical trees that likely play an important role in forest community dynamics.  相似文献   

15.
Recent studies have interpreted intraspecific divergence in relative head sizes in snakes as evidence for adaptation of the trophic apparatus in gape-limited predators to local prey size. However, such variation might also arise from non-adaptive processes (such as allometry, correlated response, genetic drift, or non-adaptive phenotypic plasticity). We test predictions from these alternative hypotheses using data on the allometric relationship between head size and body size in two wide-ranging snake species: eight populations of adders ( Vipera berus ) and 30 populations of common gartersnakes ( Thamnophis sirtalis ). Our data enable strong rejection of the alternative (non-adaptive) hypotheses, because the relationship between head and body size differed significantly among populations, the geographic distance separating pairs of populations explained less than 1.5% of their divergence in allometric coefficients, and the within-population allometric coefficients were higher than the among-population coefficients in each species. In addition, the geographical variability of allometric coefficients in females did not parallel that in males, suggesting that allometric coefficients have evolved independently in the two sexes. Phenotypic plasticity also cannot explain the data, because laboratory studies show that the allometric relationship between head size and body size is relatively insensitive to differing growth rates. We conclude that the intraspecific head size divergence in these snakes is better explained by spatially heterogeneous selection to optimize prey handling ability, than by non-adaptive processes.  相似文献   

16.
17.
The hands and feet of primates fulfill a variety of biological roles linked with food acquisition and positional behavior. Current explanations of shape differences in cheiridial morphology among prosimians are closely tied to body size differences. Although numerous studies have examined the relationships between body mass and limb morphology in prosimians, no scaling analysis has specifically considered hand and foot dimensions and intrinsic proportions. In this study, we present such an analysis for a sample of 270 skeletal specimens distributed over eight prosimian families. The degree of association between size and shape was assessed using nonparametric correlational techniques, while the relationship between each ray element length and body mass (from published data and a body mass surrogate) was tested for allometric scaling. Since tarsiers and strepsirrhines encompass many taxa of varying degrees of phylogenetic relatedness, effective degrees of freedom were calculated, and comparisons between families were performed to partially address the problem of statistical nonindependence and "phylogenetic inertia." Correlational analyses indicate negative allometry between relative phalangeal length (as reflected by phalangeal indices) and body mass, except for the pollex and hallux. Thus, as size increases, there is a significant decrease in the relative length of the digits when considering all prosimian taxa sampled. Regression analyses show that while the digital portion of the rays scales isometrically with body mass, the palmar/plantar portion of the rays often scales with positive allometry. Some but not all of these broadly interspecific allometric patterns remain statistically significant when effective degrees of freedom are taken into account. As is often the case in interspecific scaling, comparisons within families show different scaling trends in the cheiridia than those seen across families (i.e., lorisids, indriids, and lemurids exhibit rather different allometries). The interspecific pattern of positive allometry that appears to best characterize the metapodials of prosimians, especially those of the foot, parallels differences found in the morphology of the volar skin. Indeed, relatively longer metapodials appear to covary with flatter and more coalesced volar pads, which in turn slightly improve frictional force for animals that are at a comparative disadvantage while climbing because of their larger mass. Despite the essentially isometric relationship found between digit length and body mass across prosimians, examination of the residual variation reveals that tarsiers and Daubentonia possess, relative to their body sizes, remarkably long fingers. Such marked departures between body size and finger length observed in these particular primates are closely linked with specialized modes of prey acquisition and manipulation involving the hands.  相似文献   

18.
The evolution of encephalization in caniform carnivorans   总被引:1,自引:0,他引:1  
A weighted-average model, which reliably estimates endocranial volume from three external measurements of the neurocranium of extant taxa in the mammalian order Carnivora, was tested for its applicability to fossil taxa by comparing model-estimated endocranial volumes to known endocast volumes. The model accurately reproduces endocast volumes for a wide array of fossil taxa across the crown radiation of the Carnivora, three stem carnivoramorphan taxa, and Pleistocene fossils of two extant species. Applying this model to fossil taxa without known endocast volumes expanded the sample of fossil taxa with estimated brain volumes in the carnivoran suborder Caniformia from 11 to 60 taxa. This then allowed a comprehensive assessment of the evolution of relative brain size across this clade. An allometry of brain volume to body mass was calculated on phylogenetically independent contrasts for the set of extant taxa, and from this, log-transformed encephalization quotients (logEQs) were calculated for all taxa, extant, and fossil. A series of Mann-Whitney tests demonstrated that the distributions of logEQs for taxa early in caniform evolutionary history possessed significantly lower median logEQs than extant taxa. Median logEQ showed a pronounced shift around the Miocene-Pliocene transition. Support tests, based on likelihood ratios, demonstrated that the variances of these distributions also were significantly lower than among modern taxa, but logEQ variance increased gradually through the history of the clade, not abruptly. Reconstructions of ancestral logEQs using weighted squared-change parsimony demonstrate that increased encephalization is observed across all major caniform clades (with the possible exception of skunks) and that these increases were achieved in parallel, although an "ancestor-descendant differencing" method could not rule out drift as a hypothesis. Peculiarities in the estimated logEQs for the extinct caniform family Amphicyonidae were also investigated; these unusual patterns are likely due to a unique allometry in scaling brain to body size in this single clade.  相似文献   

19.
The significance of a gradient in enamel thickness along the human permanent molar row has been debated in the literature. Some attribute increased enamel thickness from first to third molars to greater bite force during chewing. Others argue that thicker third molar enamel relates to a smaller crown size facilitated by a reduced dentin component. Thus, differences in morphology, not function, explains enamel thickness. This study draws on these different interpretive models to assess enamel thickness along the entire human deciduous tooth row. Average enamel thickness (AET), the area and proportion of crown enamel and dentin, and a crown size proxy are calculated for incisors, canines, and molars. Allometric scaling relationships are assessed within each tooth class, and then comparisons are undertaken along the row. Generally, AET was correlated with crown size and scaled with isometry, except for second molars which scaled with positive allometry. Mean AET increased along the row and was greater on molars, where bite forces are reported to be higher. Second molars combined the largest crown size with the thickest enamel and the smallest proportion of dentin, which is consistent with a reduction in the potential for cusp fracture under high bite forces. Resistance to wear may also account for some enamel thickness variation between tooth classes. Dental reduction did not explain the trend in AET from central to lateral incisors, or from first to second molars. The gradient in AET along the deciduous tooth row is partly consistent with a functional interpretation of enamel thickness. Am J Phys Anthropol 151:518–525, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Performance data for the claws of six sympatric species of Cancer crabs confirmed a puzzling pattern reported previously for two other decapod crustaceans (stone crabs, Menippe mercenaria, and lobsters, Homarus americanus): Although biting forces increased, maximum muscle stresses (force per unit area) declined with increasing claw size. The negative allometry of muscle stress and the stress at a given claw size were fairly consistent within and among Cancer species despite significant differences in adult body size and relative claw size, but were not consistent among decapod genera. Therefore, claw height can be used as a reliable predictor of maximum biting force for the genus Cancer, but must be used with caution as a predictor of maximum biting force in wider evolutionary and biogeographical comparisons of decapods. The decline in maximum muscle stress with increasing claw size in Cancer crabs contrasts with the pattern in several other claw traits. Significantly, three traits that affect maximal biting force increased intraspecifically with increasing claw size: relative claw size, mechanical advantage, and sarcomere length of the closer muscle. Closer apodeme area and angle of pinnation of the closer muscle fibers varied isometrically with claw size. The concordant behavior of these traits suggests selection for higher biting forces in larger crabs. The contrast between the size dependence of muscle stress (negative allometry) and the remaining claw traits (isometry or positive allometry) strongly suggests that an as yet unidentified constraint impairs muscle performance in larger claws. The negative allometry of muscle stress in two distantly related taxa (stone crabs and lobsters) further suggests this constraint may be widespread in decapod crustaceans. The implications of this performance constraint for the evolution of claw size and the "arms-race" between decapod predators and their hard-shelled prey is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号