首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 258 毫秒
1.
Degradative processing of internalized insulin in isolated adipocytes   总被引:9,自引:0,他引:9  
Based on the distribution of 125I-insulin between the cell surface and the cell interior, it was found that insulin rapidly binds (t 1/2 = 0.4 min) to surface receptors at 37 degrees C, and after an initial lag period of about 1 min, accumulates intracellularly until steady state is reached (t 1/2 = 3.5 min). At this time about 40% of the total cell-associated 125I-insulin resides in the cell interior reflecting a dynamic equilibrium between the rate of insulin endocytosis and the rate at which internalized insulin is processed and extruded from cells. Since this percentage decreased to 15% at 16 degrees C, it appears that internalization is more temperative-sensitive than the intracellular processing of insulin. When 125I-insulin was preloaded into the cell interior, it was found that internalized insulin was rapidly released to the medium at 37 degrees C (t 1/2 = 6.5 min) and consisted of both degraded products and intact insulin (as assessed by trichloroacetic acid precipitability and column chromatography). Since 75% of internalized insulin was ultimately degraded, and 25% was released intact, this indicates that degradation is the predominant pathway. To determine when incoming insulin enters a degradative compartment, cells were continually exposed to 125I-insulin and the composition of insulin in the cell interior over time was assessed. After 2 min all endocytosed insulin was intact, between 2-3 min degradation products began accumulating intracellularly, and by 15 min equilibrium was reached with 20% of internalized insulin consisting of degraded products. Degraded insulin was then released from the cell interior within 4-5 min after endocytotic uptake, since this was the earliest time chloroquine was found to inhibit the release of degradation products. Moreover, the final release of degraded insulin was not inhibitable by the energy depleter dinitrophenol. Thus, within the degradative pathway, insulin enters lysosomes by 2.5-3 min and is released to the medium by simple diffusion after an additional 1.5-2 min.  相似文献   

2.
In this study we considered the effect of chloroquine on the processing and intracellular distribution of internalized secretin radioligand in acinar cells. Chloroquine (100 microM) had no effect on the total amount of 125I-secretin bound but had marked effects on the processing of this radioligand in acinar cells. After an initial 60 min of radioligand binding in the presence and absence of chloroquine, cells were washed free of unbound radioligand, resuspended and then processed for different times at 37 degrees C. During 60, 120 and 180 min of processing, the amount of internalized radioligand in the presence of 100 microM chloroquine was increased by 116, 194 and 273%, respectively, compared to untreated control samples. Chloroquine also increased the amount of intact 125I-secretin radioligand within the cell as measured by rebinding to pancreatic plasma membranes. After 120 and 180 min of processing, intact peptide within the acinar cell was 25 and 66% greater in the presence of this agent than in control samples (P less than or equal to 0.01). To determine if chloroquine affected intracellular localization of the secretin radioligand, we measured the amount of radioactivity in soluble and particulate fractions of cell homogenates. Chloroquine decreased radioactivity entering particulate fractions of the cell by greater than 35% after 120 and 180 min of processing (P less than or equal to 0.01). This study demonstrates that (1) chloroquine inhibits the intracellular degradation of secretin in acinar cells and (2) chloroquine alters intracellular localization of this peptide during processing.  相似文献   

3.
Biochemical methods have been used to quantitate total, acid-stable and acid-labile association of (mono[125I]iodoTyr10) glucagon with rat hepatocytes in suspension to evaluate internalization of glucagon and its receptors. Internalization is inhibited by low temperature, phenylarsine oxide, and by blocking receptor binding, consistent with receptor-mediated endocytosis. Approximately 30% of the total cell-associated hormone is internalized at 30 min of incubation. The rate declines until 90 min when the internalization of glucagon ceases, although the cells remain competent to internalize asialofetuin. From 90 min to 4 h, 27% of the maximum label internalized at 30 min remains within cells. The number of cell surface receptors decreases but the affinity of those remaining is unchanged. However, 1.7-2.7 surface receptors are lost to binding for each molecule of radiolabeled glucagon internalized. Uptake occurs according to a rate constant of 0.183 min-1 (t1/2 = 3.8 min). We conclude that (i) hepatocytes internalize a finite quantity of glucagon, implying the existence of undefined regulatory mechanisms; (ii) hormone is retained for greater than 2 h within cells and may play a physiological role within cells; and (iii) both occupied and unoccupied receptors become inaccessible to extracellular hormone as internalization proceeds; rapid recycling of receptors does not occur.  相似文献   

4.
Human HepG2 hepatoma cells express a high number of insulin receptors. Growing cells exhibit 70% of their insulin receptors on the plasma membrane. Moreover, cell-surface insulin receptors form molecular complexes with class I major histocompatibility antigens, as determined by co-immunoprecipitation of the receptors by anti-class I monoclonal antibodies. On exposure to saturating concentrations of insulin, the hormone is rapidly internalized into a Pronase-resistant compartment. Internalization of insulin is accompanied by a rapid (t1/2 = 2-3 min) redistribution of insulin receptors from the cell surface to an intracellular compartment. On removal of insulin from the medium, functional receptors recycle back to the plasma membrane, where they can bind insulin again. With chronic exposure of HepG2 cells to insulin, the initial redistribution of receptors is followed by a slow (t1/2 = 9 h) down-regulation of the receptors. Finally, notwithstanding their interaction at the cell surface, insulin receptors and class I major histocompatibility antigens are internalized at different rates and with independent regulation.  相似文献   

5.
The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblast insulin receptors. These cells bind and internalize insulin normally. Biochemical assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4 degrees C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37 degrees C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The total number of complexes reached a maximum by 5 min and decreased rapidly thereafter with a t 1/2 of approximately 10 min. There was a distinct delay in the appearance, rate of rise, and peak of intracellular free and degraded insulin. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored, based on the ability of dissociated insulin to rebind to receptor upon neutralization of acidic intracellular vesicles with monensin. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation.  相似文献   

6.
A rapid one-step method was developed for harvesting and concentrating insulin receptors from solubilized adipocytes, which entails precipitating soluble receptors with polyethylene glycol and resuspending the receptor-containing pellet in a reduced volume of binding buffer. With this procedure 90-100% of receptors were recovered, while 80% of cellular protein was removed, thus resulting in a marked reduction of both ligand and receptor proteases and about a 5-fold purification of the receptor. More importantly, greater than 98% of the Triton X-100 detergent was removed during this procedure so that the reduced receptor affinity observed in solubilized extracts (due to detergent) was restored to normal. Reconstituted receptors exhibited normal binding characteristics similar to those observed for plasma membrane receptors. The general utility of our receptor precipitation-reconstitution method is highlighted by studies on insulin-induced translocation of receptors from the cell-surface to the cell-interior of adipocytes and studies on the assessment of the binding affinity of nascent intracellular receptors. The results of these studies are consistent with the following. 1) Insulin initiates endocytotic uptake of insulin receptors, which then recycle back to the cell-surface. 2) Chloroquine impairs the recycling of internalized receptors while preventing receptor degradation, resulting in the progressive trapping and accumulation of receptors within cells during insulin treatment. 3) Receptor translocation during acute insulin-induced down-regulation is stoichiometric in that receptors lost from the cell-surface can be quantitatively recovered within the cell-interior. 4) In the absence of ligand, these receptors within adipocytes are mainly newly synthesized receptors enroute to the cell-surface, and they possess an affinity similar, if not identical, to mature receptors on the plasma membrane.  相似文献   

7.
Using selected conditions, the appropriate collagenase, albumin and cell treatment, a preparation of isolated adipocytes was developed with no extracellular insulin degrading activity. Cell mediated insulin degradation rates were 0.68%±0.05%/100 000 cell/h using trichloracetic acid precipitability as a measure. Chloroquine (CQ) increased cell-associated radioactivity and decreased degradation while dansylcadaverine (DC), PCMBS and bacitracin (BAC) decreased degradation with no effect on binding. Extraction and chromatography of the cell-associated radioactivity showed 3 peaks, a large molecular weight peak, a small molecular weight peak and an insulin-sized peak. CQ, DC and BAC all decreased the small molecular weight peak while CQ and DC also increased the peak of large molecular weight radioactivity. Cell mediated insulin degradation in the presence of combinations of inhibitors suggested two pathways in adipocytes, one affected by inhibitors of the insulin degrading enzyme (IDE) (bacitracin and PCMBS) and the other altered by cell processing inhibitors (DC, CQ and phenylarsenoxide). Chloroquine altered the pattern of the insulin-sized cell-associated HPLC assayed degradation products, further supporting two pathways of degradation; one a chloroquine-sensitive and one a chloroquine-insensitive pathway.  相似文献   

8.
To further investigate insulin's role in regulating the turnover of insulin receptor during down-regulation in 3T3-L1 adipocytes, the relationship between the cellular distribution and turnover of unoccupied, noncovalently occupied, and covalently occupied receptor was examined. At steady-state 12% of the unoccupied receptors and 46% of covalently occupied receptors are intracellular. The apparent first-order rate constant (Kapp) for turnover of the total pool of covalently occupied receptors (0.16 h-1) is 3.8-fold higher than that for unoccupied receptors (0.042 h-1). When unlabeled insulin is added, identical values for both Kapp (0.10 h-1) and distribution (26% internal) are measured for noncovalently and covalently occupied receptors. The rate constant (Kdeg), describing the relative sensitivity of internalized receptor to degradation, is identical (0.36-0.41 h-1) for unoccupied, noncovalently occupied, and permanently occupied pools of internal receptor. Mechanisms for down-regulation postulating: (a) an occupancy-dependent alteration in the conformation of internal receptor increasing receptor sensitivity to internal proteases, (b) a preferential sorting of internal occupied receptor to degradative pathways, or (c) induction of intracellular proteases by insulin, would all reflect a substantial change in Kdeg for occupied receptor and thus are unlikely mechanisms by which insulin increases the rate of receptor turnover. The turnover of insulin receptor in 3T3-L1 adipocytes is regulated primarily by its intracellular concentration and not by the state of occupancy of internalized receptor.  相似文献   

9.
Monomeric ferritin-insulin and high-resolution electron microscopic analysis were used to study the organization, distribution, and movement of insulin receptors on differentiated 3T3-L1 adipocytes. Analysis of the binding to prefixed cells showed that insulin initially occupied single and paired receptors preferentially located on microvilli. The majority of receptors (60%) were found as single molecules and 30% were pairs. In 1 min at 37% C, 50% of the receptors on nonfixed cells were found on the intervillous plasma membrane and more than 70% of the total receptors had microaggregated. By 30 min only 7% of the receptors were single or paired molecules on microvilli. The majority were on the intervillous membrane, with 95% of those receptors in groups. The receptor groups on the intervillous plasma membrane could be found in both noncoated invaginations and coated pits. The concentration of occupied receptors in the noncoated invaginations and the coated pits was similar; however, ten times more noncoated invaginations than coated pits contained occupied insulin receptors. The observations in this study contrast with those reported on rat adipocytes using identical techniques (Jarett and Smith, 1977). Insulin receptors on adipocytes were initially grouped and randomly distributed over the entire cell surface and did not microaggregate into larger groups. Insulin receptors on rat adipocytes were found in noncoated invaginations but were excluded from the coated pits. The differences in the organization and behavior of the insulin receptor between rat and 3T3-L1 adipocytes suggest that the mechanisms regulating the initial organization of insulin receptors and the aggregation of occupied receptors may be controlled by tissue-specific processes. Since both of these cell types are equally insulin sensitive, the differences in the initial organization and distribution of the insulin receptors on the cell surface may not be related to the sensitivity or biological responsiveness of these cells to insulin but may affect other processes such as receptor regulation and internalization. On the other hand, the microaggregates of occupied receptors on both cell types may relate to biological responsiveness.  相似文献   

10.
We have studied the phosphorylation state of the insulin receptor during receptor-mediated endocytosis in the well-differentiated rat hepatoma cell line Fao. Insulin induced the rapid internalization of surface-iodinated insulin receptors into a trypsin-resistant compartment, with a 3-fold increase in the internalization rate over that seen in the absence of insulin. Within 20 min of insulin stimulation, 30-35% of surface receptors were located inside the cell. This redistribution was half-maximal by 10.5 min. Similar results were obtained when the loss of surface receptors was measured by 125I-insulin binding. Tyrosyl phosphorylation of internalized insulin receptors was measured by immunoprecipitation with antiphosphotyrosine antibody. Immediately after insulin stimulation, 70-80% of internalized receptors were tyrosine phosphorylated. Internalized receptors persisted in a phosphorylated state after the dissociation of insulin but were dephosphorylated prior to their return to the plasma membrane. After 45-60 min of insulin stimulation, the tyrosine phosphorylation of the internal receptor pool decreased by 45%, whereas the phosphorylation of surface receptors was unchanged. These data suggest that insulin induces the internalization of phosphorylated insulin receptors into the cell and that the phosphorylation state of the internal receptor pool may be regulated by insulin.  相似文献   

11.
Insulin receptors on isolated rat adipocytes were photoaffinity-labeled with a biologically active photo-derivative of insulin (iodinated B2 (2-nitro-4-azidophenylacetyl)-des- PheB1 -insulin) in order to study the metabolism of surface receptors after binding insulin. Adipocytes were incubated with iodinated B2 (2-nitro-4-azidophenylacetyl)-des- PheB1 -insulin (40 ng/ml) at 16 degrees C until specific binding reached equilibrium, subjected to photolysis, and then incubated at 37 degrees C to follow the metabolism of the covalent insulin-receptor complexes. Susceptibility of labeled insulin receptors to tryptic digestion was used to distinguish between receptors on the cell surface and those inside the cell. Following incubation of photoaffinity-labeled adipocytes at 37 degrees C, there was an initial rapid loss of insulin receptors from the cell surface. The internalization of insulin receptors occurred at a significantly faster rate than the loss of receptors from the cell, resulting in an accumulation of intracellular receptors. The proportion of surface-derived receptors inside the cell reached an apparent steady state after 30 min and represented about 20% of the labeled receptors originally on the cell surface. Chloroquine had no effect on the internalization of insulin receptors but inhibited their degradation. Cycloheximide inhibited both internalization and degradation of insulin receptors. After 60 min at 37 degrees C, the disappearance of insulin receptors from the cell surface slowed markedly and the overall loss of insulin receptors from the cell was minimal. If chloroquine was added at this time, there was a marked increase in the loss of receptors from the cell surface with a concomitant 2-fold increase in the intracellular pool of surface-derived receptors. From these observations, we conclude that 1) internalization is not rate-limiting in insulin receptor degradation, 2) chloroquine has no effect on the internalization of insulin receptors but inhibits the intracellular degradation of receptors, 3) cycloheximide interferes with both the internalization and degradation of insulin receptors, and 4) the plateau in the loss of labeled receptors from the cell surface after 60 min at 37 degrees C could be due to a new steady state balance between internalization and recycling of photoaffinity-labeled receptors.  相似文献   

12.
This ultrastructural study compared the endocytosis of a peptide hormone, ferritin-labeled insulin (Fm-I) or gold-labeled insulin (Au-I), and a non-hormonal ligand, gold-labeled alpha-2-macroglobulin-methylamine (Au-alpha 2MGMA), by rat adipocytes. Quantitative analysis of the cell surface showed that coated pits occupied 0.4% of the adipocyte surface. This was one fifth to one tenth of that which has been reported on fibroblasts and hepatocytes, cell types in which receptor-mediated endocytosis has been extensively studied. In contrast, uncoated micropinocytotic invaginations were quite numerous and occupied 13.1% of the adipocyte cell surface. The frequency of micropinocytotic invaginations, 13.8 per micron 2 of plasma membrane, was 7-12 times greater than has been reported on fibroblasts. Therefore, the ultrastructure of the endocytic apparatus on rat adipocytes was different from more commonly studied cell types. At 4 degrees C, Au-alpha 2MGMA concentrated within coated pits to a density that was 52 times greater than that on the uncoated plasma membrane. Au-alpha 2MGMA was excluded from micropinocytotic invaginations by more than 93%; this exclusion was unrelated to the size of the Au-alpha 2MGMA particle. In contrast, at 4 degrees C, Fm-I did not concentrate within coated pits and occupied micropinocytotic invaginations in a random manner. At 37 degrees C, coated pits accounted for all of the endocytosis of Au-alpha 2MGMA, proving that these structures were functional despite their atypically low density. In contrast, greater than 99% of the endocytosis of Fm-I or Au-I occurred through micropinocytotic invaginations. These results demonstrated for the first time by a comparative, quantitative, ultrastructural method that insulin and Au-alpha 2MGMA undergo endocytosis by dissimilar mechanisms on rat adipocytes. Dissimilarities in the endocytosis of insulin and Au-alpha 2MGMA may be related to the different biological roles of these two molecules.  相似文献   

13.
Insulin receptors on the surface of isolated rat adipocytes were photoaffinity labeled at 12 degrees C with the iodinated photoreactive insulin analogue, 125I-B2 (2-nitro-4-azidophenylacetyl)-des-PheB1-insulin, and the pathways in the intracellular processing of the labeled receptors were studied at 37 degrees C. During 37 degrees C incubations, the labeled 440-kDa insulin receptors were continuously internalized (as assessed by trypsin inaccessibility) and degraded such that up to 50% of the initially labeled receptors were lost by 120 min. Metabolic poisons (0.125-0.75 mM 2,4-dinitrophenol (DNP) and 1-10 mM NaF), which led to dose-dependent depletion of adipocyte ATP pools, inhibited receptor loss, and caused up to 3-fold increase in intracellular receptor accumulation. This effect was due to inhibition of intracellular receptor degradation, and there was no apparent effect of the metabolic poisons on initial internalization of the receptors. Following maximal intracellular accumulation of labeled insulin receptors in the presence of NaF or DNP, removal of these agents resulted in a subsequent, time-dependent degradation of the accumulated receptors. However, when the lysosomotropic agent, chloroquine (0.2 mM), was added immediately following removal of the metabolic poisons, further degradation of the intracellularly accumulated receptors was prevented, suggesting that the chloroquine-sensitive degradation of insulin receptors occurs distal to the site of inhibition by NaF or DNP. To confirm this, maximal intracellular accumulation of labeled receptors was first allowed to occur in the presence of chloroquine and the cells were then washed and reincubated in chloroquine-free media in the absence or presence of NaF or DNP. Under these conditions, degradation of the intracellularly accumulated receptors continued to occur, and NaF or DNP failed to block the degradation. In summary, these results indicate that the loss of cell surface insulin receptors in adipocytes involves: 1) initial internalization of the receptors to a nondegradative intracellular compartment by a process that is relatively insensitive to ATP depletion, followed by 2) a highly energy-dependent unidirectional translocation of the receptors from this compartment to chloroquine-sensitive site(s) of degradation.  相似文献   

14.
We have studied how insulin-mediated internalization of insulin receptors and insulin activation of the insulin receptor kinase might be inter-related. Isolated rat adipocytes were exposed to 0, 6, or 500 ng/ml insulin for 40 min at 37 degrees C. Subsequently, plasma membrane, low-density microsomal membrane and high-density microsomal membrane subcellular fractions were prepared. Measurement of insulin binding to insulin receptors isolated from the membrane fractions revealed that exposure of cells to insulin resulted in a loss of binding activity (13% at 6 ng/ml, 27% at 500 ng/ml insulin) from the plasma membranes which was completely accounted for by the appearance of receptors in the low-density and high-density microsomal membrane fractions, indicating that insulin had induced translocation of insulin receptors from the surface to the cell interior. Measurement of kinase activity of the isolated receptors revealed that exposure of intact cells to 500 ng/ml insulin resulted in as much as a 35-fold increase in the intrinsic kinase activity of receptors from subcellular fractions. The kinase activity per receptor was equal in all fractions at 3-4 min but by 20 min the activity of the internalized receptors fell approximately 40% to a steady state; plasma membrane receptors, on the other hand, remained fully active over time. This indicates that newly internalized receptors retain their kinase activity but undergo subsequent deactivation. Following exposure of cells to 6 ng/ml insulin, the degree of activation of the insulin receptor kinase was lower in the plasma membrane fraction (24% of the insulin effect at 500 ng/ml) than in the low-density and high-density microsomal membrane fractions (54 and 77%, respectively, of the insulin effect at 500 ng/ml). These results suggest that receptors with an activated kinase are preferentially internalized. We conclude that exposure of adipocytes to insulin causes endocytosis of insulin receptors and activation of insulin receptor kinase, newly internalized receptors are fully active tyrosine kinases but are deactivated as they traverse the intracellular organelles represented by low-density and high-density microsomal membranes, and insulin receptor occupancy, possibly by stimulating phosphorylation and activating the insulin receptor kinase, is important for targeting insulin receptors for internalization.  相似文献   

15.
16.
The kinetics of receptor internalization and recycling was directly determined in adipocytes by measuring 125I-insulin binding to total, intracellular, and cell-surface insulin receptors. In the absence of insulin 90% of all receptors were on the cell-surface and 10% were intracellular. Insulin (100 ng/ml) rapidly altered this distribution by translocating surface receptors to the cell-interior through a temperature and energy dependent process. Surface-derived receptors were seen within cells as early as 30 s and accumulated intracellularly at the rate of approximately 20,000/min (t 1/2 = 2.7 min). After 6 min the size of the intracellular receptor pool plateaued (for up to 2 h), with 30% of surface receptors residing within the cell. This plateau was due to the attainment of an equilibrium between receptor uptake and recycling, since removal of insulin (to stop receptor uptake) was followed by both a rapid depletion of intracellular receptors and a a concomitant and stoichiometric reappearance of receptors on the cell-surface. Receptors were efficiently recycled, with little or no net loss observed even after 4 h of insulin treatment; however, recycling could be partially inhibited (approximately 10%) by several agents (e.g. chloroquine and Tris). Tris treatment of adipocytes in the presence of insulin led to 50% loss of surface and total receptors at 2 and 4 h, respectively. Since chloroquine prevented the decrease in total receptors, but not the loss of surface receptors, it appears that Tris impairs recycling by diverting a portion of incoming receptors to a chloroquine-inhibitable degradative site. From these results we conclude that: 1) insulin triggers endocytotic uptake of insulin-receptor complexes; 2) internalized receptors are then rapidly reinserted into the plasma membrane, and the receptors can traverse this recycling pathway within 6 min; 3) prolonged recycling does not normally result in measurable receptor loss, but when receptors are prevented from recycling, they become trapped intracellularly and are shunted to a chloroquine-sensitive degradative pathway; and 4) chloroquine and Tris are only partially effective inhibitors of receptor recycling.  相似文献   

17.
Sephadex (G-50 fine grade)-gel chromatography and trichloroacetic acid (TCA) precipitation were used to investigate the effects of chloroquine and bacitracin on the nature of cell-associated radioactivity in studies on the binding and degradation of 125I-insulin in cultured rat hepatocytes. Sephadex peak I, eluted with the void volume, increased with hepatocyte incubation time and comprised 6% of total cell-bound radioactivity at 120 min. However, all radioactivity in this peak was due to unspecific binding. Peak II, corresponding to intact insulin, represented 95% of specifically cell-associated label at 5 min and decreased to 77% at 120 min. Peak III, containing the final low-Mr degradation products, increased with incubation time (22% of specifically bound label at 120 min). The TCA-precipitable and TCA-soluble fractions of hepatocytes extracted with 0.1% SDS were within 4-7% of the proportions of radioactivity in peaks II and III respectively. Scatchard plots based on insulin-binding data from Sephadex chromatography or TCA precipitation were identical. Dissociation studies revealed that at least 75% of the intact insulin associated with the hepatocytes was bound to receptors at the cell surface. Bacitracin increased the proportion of cell-associated intact hormone and decreased that of ligand degraded when analysed by either Sephadex chromatography or TCA precipitation. The proportion of surface-bound to internalized intact hormone remained unaltered, indicating that bacitracin acted predominantly at the cell surface. In the presence of chloroquine, which dramatically increased the contribution of peak I to specific binding, 'intact' insulin was substantially overestimated when determined as the TCA-precipitable fraction. In addition, all peak I material and 50% of cell-associated label in peak II was trapped intracellularly, thereby pointing to the lysosomal or prelysosomal site of action of this drug.  相似文献   

18.
Anti-I-A mAb and monovalent Fab fragments were used to explore the cellular distribution and endocytosis of I-A in peritoneal exudate cells (PEC) and TA3 B lymphoma-hybridoma cells. TA3 cells contained 1.6 x 10(5) I-A sites/cell, 22 to 35% of which were intracellular. This intracellular pool was cycloheximide resistant. PEC contained 1.8 x 10(5) I-A sites/cell, 25 to 40% of which were intracellular. Upon adherence, however, the intracellular pool of I-A in PEC dropped to 2 to 11% of the total cellular I-A. Ag processing by TA3 cells was unaffected 3 h after abrogation of protein synthesis with cycloheximide, suggesting that newly synthesized I-A is not necessary for Ag processing in TA3 cells (post-synthetic processing and transport of I-A to the plasma membrane were complete by 2 h in TA3 cells with or without cycloheximide, as assessed by sequential immunoprecipitation of surface and intracellular I-A). In adherent PEC, however, cycloheximide markedly inhibited Ag processing, suggesting depletion of factors necessary for Ag processing. Ag processing may involve binding of processed Ag peptides to intracellular Ia derived to varying degrees from both endocytosis and new biosynthesis. To explore the possibility of I-A recycling, I-A endocytosis was demonstrated using mAb and monovalent Fab probes; internalization occurred within 5 min and peaked by 10 to 15 min with 15 to 35% of bound antibody in an intracellular compartment, resistant to an acid wash. Subcellular density gradient fractionation demonstrated that I-A and transferrin were processed exclusively in an endosomal fraction of relatively light density, whereas ligands of the mannose receptor were processed in light endosomes and in a distinct, denser population of endosomes, and accumulated in lysosomes. Thus, I-A appears to be internalized into a specific population of endosomes that may play a central role in Ag processing.  相似文献   

19.
Insulin resistance occurs in rat adipocytes during pregnancy and lactation despite increased or normal insulin binding respectively; this suggests that a post-receptor defect exists. The possibility has been examined that, although insulin binding occurs normally, internalization of insulin or its receptor may be impaired in these states. Insulin produced a dose-dependent reduction in the number of insulin receptors on adipocytes from virgin rats maintained in culture medium, probably due to internalization of the hormone-receptor complex. In contrast, adipocytes from pregnant and lactating rats did not exhibit this 'down-regulation' phenomenon. Down regulation was, however, apparent in all groups when the experiments were performed in Tris buffer (where receptor recycling is inhibited), suggesting that in pregnant and lactating rats insulin receptors are rapidly recycled back to the plasma membrane, whereas in virgin rats this recycling process is less effective. Internalization of insulin was also determined by using 125I-labelled insulin. Adipocytes from pregnant and lactating rats appeared to internalize similar amounts of insulin to virgin rats. In the presence of the lysosomal inhibitor chloroquine, adipocytes from pregnant rats internalized more insulin than virgin or lactating rats. These results suggest that adipocytes from pregnant and lactating rats internalize insulin and its receptor normally, whereas intracellular processing of the insulin receptor may differ from that in virgin rats. In addition the rate of lysosomal degradation of insulin may be altered in adipocytes from pregnant rats.  相似文献   

20.
The bimolecular binding reaction between mono[TyrA14-125I]iodoinsulin and the insulin receptor was investigated at 37 degrees C in intact isolated rat adipocytes in which membrane traffic was inhibited by 1 mM KCN. This treatment decreased the fraction of cell-associated radioactivity resistant to treatment at pH 3 (usually regarded as internalized ligand) from 70% to 17%. The total amount of tracer being cell-associated at steady state was reduced to about half of the control value partly because of a decreased apparent binding affinity. The t1/2 for the forward reaction was reduced from 414 s in the control cell to 26 s in the KCN treated cell. Likewise, the t1/2 for the dissociation was reduced from 461 s to 67 s. Both rate constants were pH sensitive, the association rate constant being 7-8-fold more than the dissociation rate constant. Since both rate constants for the bimolecular reaction were one order of magnitude greater than those for the uptake and the release of label in the untreated cell, other processes than binding constitute the rate-limiting step(s) in the cellular reaction with insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号