首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Domestic chicks are able to find a food goal at different times of day, with the sun as the only consistent visual cue. This suggests that domestic chickens may use the sun as a time-compensated compass, rather than as a beacon. An alternative explanation is that the birds might use the earth's magnetic field. In this study, we investigated the role of the sun compass in a spatial orientation task using a clock-shift procedure. Furthermore, we investigated whether domestic chickens use magnetic compass information when tested under sunny conditions.Ten ISA Brown chicks were housed in outdoor pens. A separate test arena comprised an open-topped, opaque-sided, wooden octagonal maze. Eight goal boxes with food pots were attached one to each of the arena sides. A barrier inside each goal box prevented the birds from seeing the food pot before entering. After habituation, we tested in five daily 5-min trials whether chicks were able to find food in an systematically allocated goal direction. We controlled for the use of olfactory cues and intra-maze cues. No external landmarks were visible. All tests were done under sunny conditions. Circular statistics showed that nine chicks significantly oriented goalwards using the sun as the only consistent visual cue during directional testing. Next, these nine chicks were subjected to a clock-shift procedure to test for the role of sun-compass information. The chicks were housed indoors for 6 days on a light-schedule that was 6 h ahead of the natural light–dark schedule. After clock-shifting, the birds were tested again and all birds except one were disrupted in their goalward orientation. For the second experiment, six birds were re-trained and fitted with a tiny, powerful magnet on the head to disrupt their magnetic sense. The magnets did not affect the chicks’ goalward orientation.In conclusion, although the strongest prediction of the sun-compass hypothesis (significant re-orientation after clock-shifting) was neither confirmed nor refuted, our results suggest that domestic chicks use the sun as a compass rather than as a beacon. These findings suggest that hens housed indoors in large non-cage systems may experience difficulties in orientation if adequate alternative cues are unavailable. Further research should elucidate how hens kept in non-cage systems orient in space in relation to available resources.  相似文献   

2.
Four Bengalese finches were trained to discriminate 2 conspecific individuals in an operant chamber. Still visual images and contact calls were simultaneously presented to the subjects and specific (“correct”) perching response was reinforced with food. After the birds acquired the discrimination, they received the first test in which visual cues alone, auditory cues alone and combination of the 2 modalities were presented. Visual cues dominantly controlled the discriminative behavior of all birds. Then the subjects received the second test in which mixtures of the visual image of 2 stimulus birds appeared under 3 different auditory conditions, namely, no call, calls of 1 bird and calls of the other bird. Two subjects used the auditory cues when the visual stimulus was a mixture of 2 stimulus birds. These results suggest that the birds used less dominant cues when the dominant cues gave ambiguous information.  相似文献   

3.
Because chickens are highly social animals, live conspecifics are often used to provide an incentive or goal in studies of gait, sociality or fear that require the bird to traverse a runway. However, the variable behaviour of the stimulus birds can influence the approach/avoidance responses of the test birds and thereby confound the results. Because chickens modify their behaviour readily and appropriately to a variety of video images, including social stimuli, we asked if video playback might represent easily controllable and standardized alternatives to live birds. Female ISA Brown chicks were housed in groups of eight and then exposed to a blank illuminated television for 10 min per day from 2 to 7 days of age. At 8 or 9 days of age they were placed individually in the start box of a 1.6 m long runway and we recorded their responses to a monitor displaying selected video images that was situated in the goal box at the opposite end of the runway. In Experiment 1 chicks approached a monitor playing the video image and soundtrack of feeding chicks significantly sooner than one of a goal box with the food dish and background noise. In Experiment 2, chicks were exposed to the same video of feeding conspecifics with or without the associated sounds or to a video of the goal box with or without the chick soundtrack. Both the videos of other chicks elicited faster approach than did those of the goal box and the sound and silent versions were equally attractive. Adding the soundtrack of feeding chicks to the goal-box video failed to increase its attractiveness. The present results suggest that chicks are attracted towards televised images of other chicks. They also indicate that the visual and auditory components of the video stimuli did not exert additive effects and that approach reflected attraction to the visual image. Collectively, our findings suggest that video playback of selected social stimuli, such as feeding conspecifics, could be a valuable tool in tests requiring voluntary locomotion along a predetermined path.  相似文献   

4.
The semi-terrestrial amphipod Talorchestia longicornis (Say) undergoes Y-axis orientation and has a hierarchy among orientation cues. A previous study found that they used sun compass orientation and moved in the onshore direction of the home beach in both air and water. The present study determined whether this species could also use local landmarks and beach slope as orientation cues. They oriented upslope in simulated darkness in the laboratory on both dry and wet sand with threshold slopes of 2° and 4°, respectively. When tested outside in an arena in air on wet sand, they were disoriented when sun, slope, and landmarks were absent as cues. If presented with single cues, they moved upslope, toward landmarks and in the up-beach direction of the home beach during sun compass orientation. Using paired cues, sun was dominant over slope and landmarks, while slope was dominant over landmarks. In the presence of all three cues, amphipods displayed sun compass orientation in all test combinations except when slope and landmarks were paired together against the sun, which evoked a bimodal response. Thus, the hierarchy of cues for up-beach movement of T. longicornis during Y-axis orientation is the sun, then the slope, and finally the landmarks.  相似文献   

5.
Tracking radar and visual observation techniques were used to observe the orientation of free-flying passerine nocturnal migrants in situations in which potentially usable directional cues were absent or gave conflicting information. When migrants had seen the sun near the time of sunset and/or the stars, they oriented in appropriate migratory directions even when winds were opposed. Under solid overcast skies that prevented a view of both sun and stars, the birds headed downwind in opposing winds and thus moved in seasonally inappropriate directions. The data point to the primacy of visual cues over wind direction, with either sun or stars being sufficient to allow the birds to determine the appropriate migration direction.  相似文献   

6.
《Animal behaviour》1986,34(3):754-762
Gray jays (Perisoreus canadensis) typically store food boli in various sites on conifers. In a laboratory setting we determined whether gray jays recover stored boli by means of olfaction, trial-and-error search or spatial memory. Using an artificial tree with 52 possible caching sites, caching and/or recovery trials were performed with five captive gray jays for the following experiments: (1) no extra visual cues on tree; (2) extra visual cues (pine foliage) attached to tree; (3) pungent-smelling food hidden by observer; (4) one bird allowed to cache food but caches recovered by a second bird; (5) one bird allowed to observe another bird cache food and later permitted to recover those caches. Results supported the memory hypothesis, but cache site preferences were apparent for individual birds. To control for this, an additional experiment (6), in which cache site access was limited by the investigators, was conducted with two new birds. These results also indicated that gray jays use spatial memory to recover stored boli.  相似文献   

7.
ABSTRACT.   Recent advances in the methods used to estimate detection probability during point counts suggest that the detection process is shaped by the types of cues available to observers. For example, models of the detection process based on distance-sampling or time-of-detection methods may yield different results for auditory versus visual cues because of differences in the factors that affect the transmission of these cues from a bird to an observer or differences in an observer's ability to localize cues. Previous studies suggest that auditory detections predominate in forested habitats, but it is not clear how often observers hear birds prior to detecting them visually. We hypothesized that auditory cues might be even more important than previously reported, so we conducted an experiment in a forested habitat in North Carolina that allowed us to better separate auditory and visual detections. Three teams of three observers each performed simultaneous 3-min unlimited-radius point counts at 30 points in a mixed-hardwood forest. One team member could see, but not hear birds, one could hear, but not see, and the third was nonhandicapped. Of the total number of birds detected, 2.9% were detected by deafened observers, 75.1% by blinded observers, and 78.2% by nonhandicapped observers. Detections by blinded and nonhandicapped observers were the same only 54% of the time. Our results suggest that the detection of birds in forest habitats is almost entirely by auditory cues. Because many factors affect the probability that observers will detect auditory cues, the accuracy and precision of avian point count estimates are likely lower than assumed by most field ornithologists.  相似文献   

8.
The few orientation studies that have been carried out with day-migrating birds show that they are able to use solar and magnetic orientation cues for orientation. Previous orientation experiments in Emlen funnels have been carried out either with hand-raised birds or with birds caught during resting periods at stop-over sites. The aim of our study was to test whether birds caught during active flight show a higher concentration of migratory activity in the seasonally appropriate migratory direction in the funnels than birds that had not experienced migration just before the funnel experiments. The topography at the alpine pass Col de Bretolet at the border of Switzerland and France allowed us to capture birds during active migratory flight. These birds were in full migration disposition. Orientation experiments with chaffinches suggested an influence of the sun because chaffinches did not orient in the seasonally expected direction, but probably showed positive phototaxis towards the light of the sun at the opposite side of the funnel. Chaffinches tested under overcast conditions oriented to the north-west which probably was a 'nonsense' orientation and not a reverse migration or compensatory behaviour. We conclude that freshly caught birds are too stressed to show appropriate orientation when tested immediately after catching.  相似文献   

9.
Ruploh T  Kazek A  Bischof HJ 《PloS one》2011,6(12):e28202
Finding a given location can be based on a variety of strategies, for example on the estimation of spatial relations between landmarks, called spatial orientation. In galliform birds, spatial orientation has been demonstrated convincingly in very young domestic chicks. We wanted to know whether adult Japanese quails (Coturnix coturnix japonica) without food deprivation are also able to use spatial orientation. The quails had to learn the relation of a food location with four conspicuous landmarks which were placed in the corners of a square shaped arena. They were trained to find mealworms in three adjacent food cups in a circle of 20 such cups. The rewarded feeders were located during training between the same two landmarks each of which showed a distinct pattern. When the birds had learned the task, all landmarks were displaced clockwise by 90 degrees. When tested in the new situation, all birds redirected their choices with respect to the landmark shift. In subsequent tests, however, the previously correct position was also chosen. According to our results, quails are using conspicuous landmarks as a first choice for orientation. The orientation towards the previously rewarded location, however, indicates that the neuronal representation of space which is used by the birds also includes more fine grain, less conspicuous cues, which are probably also taken into account in uncertain situations. We also presume that the rare orientation towards never rewarded feeders may be due to a foraging strategy instead of being mistakes.  相似文献   

10.
Human participants searched in a dynamic three-dimensional computer-generated virtual-environment open-field search task for four hidden goal locations arranged in a diamond configuration located in a 5×5 matrix of raised bins. Participants were randomly assigned to one of two groups: Consistent or Inconsistent. All participants experienced 30 trials in which four goal locations maintained the same spatial relations to each other (i.e., a diamond pattern), but this diamond pattern moved to random locations within the 5×5 matrix from trial-to-trial. For participants in the Consistent group, each goal location within the pattern always provided a unique and consistent auditory cue throughout the experimental session. For participants in the Inconsistent group, the same distinct auditory cues were provided for each goal location; however, the locations of these auditory cues within the pattern itself were randomized from trial-to-trial throughout the experimental session. Results indicated that participants in both groups learned the spatial configuration of goal locations, but the presence of consistent auditory cues did not facilitate the learning of spatial relations among locations.  相似文献   

11.
Zusammenfassung V?gel stellen den Bezug zum Ziel indirekt über ein externes Referenzsystem her. Der Navigationsproze? besteht deshalb aus zwei Schritten: zun?chst wird die Richtung zum Ziel als Kompa?kurs festgelegt, dann wird dieser Kurs mit Hilfe eines Kompa?mechanismus aufgesucht. Das Magnetfeld der Erde und Himmelsfaktoren werden von den V?gel als Kompa? benutzt. In der vorliegenden Arbeit werden der Magnetkompa?, der Sonnenkompa? und der Sternkompa? der V?gel in ihrer Funktionsweise, ihrer Entstehung und ihrer biologischen Bedeutung vorgestellt. Der Magnetkompa? erwies sich als Inklinationskompa?, der nicht auf der Polarit?t, sondern auf der Neigung der Feldlinien im Raum beruht; er unterscheidet „polw?rts“ und „?quatorw?rts“ statt Nord und Süd. Er ist ein angeborener Mechanismus und wird beim Vogelzug und beim Heimfinden benutzt. Seine eigentliche Bedeutung liegt jedoch darin, da? er ein Referenzsystem bereitstellt, mit dessen Hilfe andere Orientierungsfaktoren zueinander in Beziehung gesetzt werden k?nnen. Der Sonnenkompa? beruht auf Erfahrung; Sonnenazimut, Tageszeit und Richtung werden durch Lernprozesse miteinander verknüpft, wobei der Magnetkompa? als Richtungsreferenzsystem dient. Sobald er verfügbar ist, wird der Sonnenkompa? bei der Orientierung im Heimbereich und beim Heimfinden bevorzugt benutzt; beim Vogelzug spielt er, wahrscheinlich wegen seiner Abh?ngigkeit von der geographischen Breite, kaum eine Rolle. Der Sternkompa? arbeitet ohne Beteiligung der Inneren Uhr; die V?gel leiten Richtungen aus den Konfigurationen der Sterne zueinander ab. Lernprozesse erstellen den Sternkompa? in der Phase vor dem ersten Zug; dabei fungiert die Himmelsrotation als Referenzsystem. Sp?ter, w?hrend des Zuges, übernimmt der Magnetkompa? diese Rolle. Die relative Bedeutung der verschiedenen Kompa?systeme wurde in Versuchen untersucht, bei denen Magnetfeld und Himmelsfaktoren einander widersprechende Richtungs-information gaben. Die erste Reaktion der V?gel war von Art zu Art verschieden; langfristig scheinen sich die V?gel jedoch nach dem Magnetkompa? zu richten. Dabei werden die Himmelsfaktoren umgeeicht, so da? magnetische Information und Himmelsinformation wieder im Einklang stehen. Der Magnetkompa? und die Himmelsfaktoren erg?nzen einander: der Magnetkompa? ersetzt Sonnen- und Sternkompa? bei bedecktem Himmel; die Himmelsfaktoren erleichtern den V?geln das Richtungseinhalten, zu dem der Magnetkompa? offenbar wenig geeignet ist. Magnetfeld und Himmelsfaktoren sollten deshalb als integrierte Komponenten eines multifaktoriellen Systems zur Richtungsorientierung betrachtet werden.
The orientation system of birds — I. Compass mechanisms
Summary Because of the large distances involved, birds establish contact with their goal indirectly via an external reference. Hence any navigation is a two-step process: in the first step, the direction to the goal is determined as a compass course; in the second step, this course is located with a compass. The geomagnetic field and celestial cues provide birds with compass information. The magnetic compass of birds, the sun compass the star compass and the interactions between the compass mechanisms are described in the present paper. Magnetic compass orientation was first demonstrated by testing night-migrating birds in experimentally altered magnetic fields: the birds changed their directional tendencies according to the deflected North direction. The avian magnetic compass proved to be an inclination compass: it does not use polarity; instead it is based on the axial course of the field lines and their inclination in space, distinguishing “poleward” and “equatorward” rather than North and South. Its functional range is limited to intensities around the local field strength, but this biological window is flexible and can be adjusted to other intensities. The magnetic compass is an innate mechanism that is widely used in bird migration and in homing. Its most important role, however, is that of a basic reference system for calibrating other kinds of orientation cues. Sun compass orientation is demonstrated by clock-shift experiments: Shifting the birds' internal clock causes them to misjudge the position of the sun, thus leading to typical deflections which indicate sun compass use. The analysis of the avian sun compass revealed that it is based only on sun azimuth and the internal clock; the sun's altitude is not involved. The role of the pattern of polarized light associated with the sun is unclear; only at sunset has it been shown to be an important cue for nocturnal migrants, being part of the sun compass. The sun compass is based on experience; sun azimuth, time of day and direction are combined by learning processes during a sensitive period, with the magnetic compass serving as directional reference. When established, the sun compass becomes the preferred compass mechanism for orientation tasks within the home region and homing: in migration, however, its role is minimal, probably because of the changes of the sun's arc with geographic latitude. The star compass was demonstrated in night-migrating birds by projecting the northern stars in different directions in a planetarium. The analysis of the mechanism revealed that the internal clock is not involved; birds derive directions from the spatial relationship of the star configurations. The star compass is also established by experience; the directional reference is first provided by celestial rotation, later, during migration, by the magnetic compass. The relative importance of the various compass mechanisms has been tested in experiments in which celestial and magnetic cues gave conflicting information. The first response of birds to conflicting cues differs considerably between species; after repeated exposures, however, the birds oriented according to magnetic North, indicating a long-term dominance of the magnetic compass. Later tests in the absence of magnetic information showed that celestial cues were not simply ignored, but recalibrated so that they were again in agreement with magnetic cues. The magnetic compass and celestial cues complement each other: the magnetic field ensures orientation under overcast sky; celestial cues facilitate maintaining directions, for which the magnetic compass appears to be ill suited. In view of this, the magnetic field and celestial cues should be regarded as integrated components of a multifactorial system for directional orientation.
  相似文献   

12.
The effect of rearing with and without perches on the spatial ability of domestic hens (Gallus gallus domesticus) was investigated. No access or late access to perches during rearing has been shown to increase the later prevalence of floor eggs and cloacal cannibalism in loose-housed laying hens. This may be explained by either the birds reared without perches have difficulty using perches due to low muscle strength, lack of motor skills, and inability to keep balance, or they have impaired spatial skills necessary for moving around in three-dimensional space. These alternative explanations are not mutually exclusive.Thirty, day-old chicks were randomly allocated into two equal groups and reared in litter pens, one with access to perches (P+) and one without (P-). At 8 weeks of age, all birds were given access to perches, and by 15 weeks, all birds were using perches for roosting at night. At 16 weeks, 10 birds from each group were tested in pens where food was presented on a wire mesh tier 40 cm above the ground (T40). Three consecutive tests, with increasing difficulty for the bird to reach the food, were then performed. Firstly, the food was presented at 80 cm above the ground but with the tier at 40 cm still present; secondly, food was presented on the tier at 80 cm; and then, finally, with the food on a 160 cm high tier with the tier at 80 cm still present. All birds were food deprived for 15 h before each test and the time from the bird entering the pen until reaching the food was recorded. There was no difference in the time to reach the food between P+ and P- birds in the T40 test. But as the difficulty of the task increased, the difference between the P+ and P- birds became significant, with the P- birds taking a longer time to reach the food or not reaching it at all. Since there was no difference between P+ and P- in the T40 test, it seems reasonable to suppose that the later differences did not depend on differences in physical ability. Therefore, the results may imply that rearing without early access to perches, in some ways, impairs the spatial cognitive skills of the domestic hen.  相似文献   

13.
The amniote hippocampal formation plays an evolutionarily-conserved role in the neural representation of environmental space. However, species differences in spatial ecology nurture the expectation of species differences in how hippocampal neurons represent space. To determine the spatial response properties of homing pigeon (Columba livia) HFneurons, we recorded from isolated units in birds freely navigating a radial arena in search of food present at four goal locations. Fifty of 76 neurons displayed firing rate variations that could be placed into three response categories. Location cells (n=25) displayed higher firing rates at restricted locations in the arena space, often in proximity to goal locations. Path cells (n=13) displayed higher firing rates as a pigeon moved between a subset of goal locations. Arena-off cells (n=12) were more active when a pigeon was in a baseline holding space compared to inside the arena. Overall, reliability and coherence scores of the recorded neurons were lower compared to rat place cells. The differences in the spatial response profiles of pigeon hippocampal formation neurons, when compared to rats, provide a departure point for better understanding the relationship between spatial behavior and how hippocampal formation neurons participate in the representation of space.  相似文献   

14.
Two ‘cue-conflict’ experiments were designed to evaluate the role of (1) solar cues at sunset and stars, and (2) solar cues at sunset and geomagnetic stimuli, in the migratory orientation of the savannah sparrow (Passerculus sandwichensis). A sunset and stars experiment exposed birds in the experimental group to a mirror-reflected sunset followed by an unmanipulated view of stars. Experimental birds shifted their migratory activity in accordance with the setting sun despite exposure to a normal night sky. The sunset and geomagnetism experiment exposed birds in the experimental group to a simultaneous shift in both the position of sunset and the earth's magnetic field. Again experimentals shifted their activity in accordance with the setting sun rather than the artificially shifted magnetic field. Savannah sparrows probaly use stars as celestial landmarks to maintain a preferred direction and do not reorient their activity when exposed to an alternative cue once a direction is established. Moreover, savannah sparrows with experience of migration do not require geomagnetic information in order to use the solar cues available at sunset to select a migratory direction.  相似文献   

15.
ABSTRACT.   Many temperate-zone birds must track seasonal variation in food availability to time breeding and enhance reproductive success. However, the external cues birds use to fine-tune sexual development and timing of reproduction remain unclear. One possibility is that birds may use chemical substances in plants and bud tissues as a reliable predictor of leaf flush and the appearance of caterpillars, the preferred prey of many insectivorous birds during the breeding season. However, few data on seasonal shifts in key plant material consumption are available. To test this hypothesis, we examined the gizzard contents of Corsican Blue Tits ( Cyanistes caeruleus ), a small passerine bird with a breeding schedule tightly linked to the phenology of oak trees. We quantified and compared the consumption of tree buds by birds captured during winter (nonbreeding) and early spring (prebreeding) and found that bud use by Blue Tits was limited and constant through time. Fewer than 30% of birds had buds in their gizzards during the critical prebreeding period, and these items represented less than 1% of gizzard contents. It is unlikely that this limited use of buds allowed birds to track a potential chemical signal at the time of reproductive decision making. Unless more data on the consumption of plant material become available, we suggest that other environmental factors be examined to help identify the cues used by temperate-zone birds to time their reproduction.  相似文献   

16.
We adapted a technique to explore the social transmission of spatial information in homing pigeons Columba livia. Five demonstrator pigeons were first trained to find a food goal within an indoor arena. This arena consisted of nine lidded cups laid out within a 12x12 grid on the floor. The task was to find the goal cup and flip the lid to obtain the food hidden within. Once the demonstrators had reached criterion the experiment proper began. During stage 1 of the experiment, 10 target birds, which had not previously been trained to find the goal, were introduced to the spatial task either in isolation or paired with a demonstrator. We measured how long they took to complete the task, the number of squares crossed on the grid, and the number of incorrect lids flipped. In stage 2, the target birds were introduced to the arena a second time, by themselves, and we compared the performance of the birds in the two treatments. The pigeons that had been introduced to the task with a demonstrator in stage 1 walked further and made more incorrect choices when searching for the food goal in stage 2 than the pigeons that were introduced to the task alone. This indicates that pigeons learn a spatial, food-finding task more effectively when performing the task alone than when accompanied by a knowledgeable conspecific. We discuss possible reasons for this in the light of previous experiments. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

17.
Some insectivorous birds orient towards insect‐defoliated trees even when they do not see the foliar damage or the herbivores. There are, however, only a few studies that have examined the mechanisms behind this foraging behaviour. Previous studies suggest that birds can use olfactory foraging cues (e.g. volatile organic compounds (VOCs) emitted by defoliated plants), indirect visual cues or a combination of the two sensory cues. VOCs from insect‐defoliated plants are known to attract natural enemies of herbivores, and researchers have hypothesized that VOCs could also act as olfactory foraging cues for birds. We conducted three experiments across a range of spatial scales to test this hypothesis. In each experiment, birds were presented with olfactory cues and their behavioural responses or foraging outcomes were observed. In the first experiment, two different VOC blends, designed to simulate the volatile emissions of mountain birch (Betula pubescens ssp. czerepanovii) after defoliation by autumnal moth (Epirrita autumnata) larvae, were used in behavioural experiments in aviaries with pied flycatchers (Ficedula hypoleuca). The second experiment was a field‐based trial of bird foraging efficiency; the same VOC blends were applied to mountain birches, silver birches (B. pendula) and European white birches (B. pubescens) with plasticine larvae attached to the trees to serve as artificial prey for birds and provide a means to monitor predation rate. In the third experiment, the attractiveness of silver birch saplings defoliated by autumnal moth larvae versus intact controls was tested with great tits (Parus major) and blue tits (Cyanistes caeruleus) in an aviary. Birds did not orient towards either artificial or real trees with VOC supplements or towards herbivore‐damaged saplings when these saplings and undamaged alternatives were hidden from view. These findings do not support the hypothesis that olfactory foraging cues are necessary in the attraction of birds to herbivore‐damaged trees.  相似文献   

18.
Runway tests are considered indicative of underlying sociality in birds and their ability to make social discriminations. We evaluated whether experience of a prior stressor alters the subsequent affiliation responses of 9 or 10-day-old chicks simultaneously exposed to familiar (cagemates) and unfamiliar conspecifics placed in goal boxes at opposite ends of a runway. Birds were housed in groups of eight in home cages. Half of the birds in each home cage were used as either familiar or unfamiliar social stimuli in the goal boxes. The other half of the birds were randomly assigned either to a control (CON; n = 51) group that remained undisturbed until testing or to a stress-treatment (STR; n = 52) group that was exposed to a 5-min restraint stressor, returned to its home cage and then tested 1 h later. Birds were individually tested in the runway for 5 min and the behaviours video-recorded. During revision of tapes, the projected floor image of the runway was divided into squares and zones. The stressor decreased (P < 0.01) the time spent in close proximity (close zone; CZ) to conspecifics regardless of the familiarity of the stimulus birds. Regardless of treatment, test chicks showed shorter latencies to enter (P < 0.05) and spent longer time (P < 0.02) in the familiar than in the unfamiliar CZ suggesting that young chicks can discriminate between familiar and unfamiliar conspecifics encountered in novel surroundings. While in close proximity to familiar conspecifics, STR birds showed a reduced (P < 0.05) number of squares entered compared to CONs. This reduced locomotor activity was not accompanied by an increased activity in other zones of the runway. At the end of the trial, both CON and STR birds showed a reduced (P < 0.05) locomotor activity in the unfamiliar CZ and an increased (P < 0.05) activity in the central zone of the runway. Interestingly, no differences were detected between CON and STR birds in the total number of squares entered during the trial. These results suggest that prior stressor exposure did not affect the overall amount of locomotion but altered the spatial distribution of it. Collectively, our findings suggest that exposure to an acute stressor event subsequently affects chicks’ affiliation responses in runway tests. The way a bird will react depends on the identity (familiar or unfamiliar) of the conspecifics in its close environment.  相似文献   

19.
The first solitary migration of juvenile birds is difficult to study because of a low juvenile survival rates and sometimes long delays in return to the breeding grounds. Consequently, little is known about this crucial life event for many bird species, in particular the sensory guidance mechanisms facilitating the first migratory journey. Initial orientation during the first migration is a key measure to investigate these mechanisms. Here, we developed an assay to measure initial orientation as flight direction upon first take‐off in nocturnally fledging juvenile seabirds. We dorsally deployed a coloured LED on juvenile birds to allow researchers to observe the vanishing bearings of individuals as they flew out to sea. Additionally, we co‐deployed either a small Neodymium magnet or glass bead (control) on top of the bird's head to investigate the use of magnetoreception, previously unexplored in this early life stage. We used this assay to observe the first flight of Manx shearwaters Puffinus puffinus and found that they did not orient towards their wintering ground straight after taking off. Further, we did not find an effect of the magnetic treatment on juveniles' flight direction, though whether this is due to the birds not using magnetoreception, other salient cues being available or a lack of motivation to orient to the migratory beeline is unclear. We were, however, able to identify wind direction and topography as drivers of first flight direction in Manx shearwaters, which fledged with wind component between a crosswind and a tailwind and directed their maiden flight towards the sea and away from the land. This novel assay will facilitate the study of the maiden flight of nocturnally fledging birds and will help advance the study of sensory guidance mechanisms underpinning migratory orientation in a wide range of taxa, including species which are traditionally challenging to study.  相似文献   

20.
The goal of the present study was to determine which sensory cues the mangrove rivulus Kryptolebias marmoratus, a quasi-amphibious, hermaphroditic fish, uses to orient in an unfamiliar terrestrial environment. In a laboratory setting, K. marmoratus were placed on a terrestrial test arena and were provided the opportunity to move toward reflective surfaces, water, dark colours v. light colours, and orange colouration. Compared with hermaphrodites, males moved more often toward an orange section of the test arena, suggesting that the response may be associated with camouflage or male–male competition, since only males display orange colouration. Younger individuals also moved more often toward the orange quadrant than older individuals, suggesting age-dependent orientation performance or behaviour. Sloped terrain also had a significant effect on orientation, with more movement downhill, suggesting the importance of the otolith-vestibular system in terrestrial orientation of K. marmoratus. By understanding the orientation of extant amphibious fishes, we may be able to infer how sensory biology and behaviour might have evolved to facilitate invasion of land by amphibious vertebrates millions of years ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号