首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
R. T. Surosky  B. K. Tye 《Genetics》1988,119(2):273-287
We explored the behavior of meiotic chromosomes in Saccharomyces cerevisiae by examining the effects of chromosomal rearrangements on the pattern of disjunction and recombination of chromosome III during meiosis. The segregation of deletion chromosomes lacking part or all (telocentric) of one arm was analyzed in the presence of one or two copies of a normal chromosome III. In strains containing one normal and any one deletion chromosome, the two chromosomes disjoined in most meioses. In strains with one normal chromosome and both a left and right arm telocentric chromosome, the two telocentrics preferentially disjoined from the normal chromosome. Homology on one arm was sufficient to direct chromosome disjunction, and two chromosomes could be directed to disjoin from a third. In strains containing one deletion chromosome and two normal chromosomes, the two normal chromosomes preferentially disjoined, but in 4-7% of the tetrads the normal chromosomes cosegregated, disjoining from the deletion chromosome. Recombination between the two normal chromosomes or between the deletion chromosome and a normal chromosome increased the probability that these chromosomes would disjoin, although cosegregation of recombinants was observed. Finally, we observed that a derivative of chromosome III in which the centromeric region was deleted and CEN5 was integrated at another site on the chromosome disjoined from a normal chromosome III with fidelity. These studies demonstrate that it is not pairing of the centromeres, but pairing and recombination along the arms of the homologs, that directs meiotic chromosome segregation.  相似文献   

2.
In the yeast Saccharomyces cerevisiae, the complete information needed in cis to specify a fully functional mitotic and meiotic centromere is contained within 120 bp arranged in the three conserved centromeric (CEN) DNA elements CDEI, -II, and -III. The 25-bp CDEIII is most important for faithful chromosome segregation. We have constructed single- and double-base substitutions in all highly conserved residues and one nonconserved residue of this element and analyzed the mitotic in vivo function of the mutated CEN DNAs, using an artificial chromosome. The effects of the mutations on chromosome segregation vary between wild-type-like activity (chromosome loss rate of 4.8 x 10(-4)) and a complete loss of CEN function. Data obtained by saturation mutagenesis of the palindromic core sequence suggest asymmetric involvement of the palindromic half-sites in mitotic CEN function. The poor CEN activity of certain single mutations could be improved by introducing an additional single mutation. These second-site suppressors can be found at conserved and nonconserved positions in CDEIII. Our suppression data are discussed in the context of natural CDEIII sequence variations found in the CEN sequences of different yeast chromosomes.  相似文献   

3.
A centromere (CEN) in Saccharomyces cerevisiae consists of approximately 150 bp of DNA and contains 3 conserved sequence elements: a high A + T region 78-86 bp in length (element II), flanked on the left by a conserved 8-bp element I sequence (PuTCACPuTG), and on the right by a conserved 25-bp element III sequence. We have carried out a structure-function analysis of the element I and II regions of CEN3 by constructing mutations in these sequences and subsequently determining their effect on mitotic and meiotic chromosome segregation. We have also examined the mitotic and meiotic segregation behavior of ARS plasmids containing the structurally altered CEN3 sequences. Replacing the periodic tracts of A residues within element II with random A + T sequences of equal length increases the frequency of mitotic chromosome nondisjunction only 4-fold; whereas, reducing the A + T content of element II while preserving the length results in a 40-fold increase in the frequence of chromosome nondisjunction. Structural alterations in the element II region that do not decrease the overall length have little effect on the meiotic segregation behavior of the altered chromosomes. Centromeres containing a deletion of element I or a portion of element II retain considerable mitotic activity, yet plasmids carrying these same mutations segregate randomly during meiosis I, indicating these sequences to be essential for maintaining attachment of the replicated sister chromatids during the first meiotic division. The presence of an intact element I sequence properly spaced from the element III region is absolutely essential for proper meiotic function of the centromere.  相似文献   

4.
Chromatin conformation of yeast centromeres   总被引:23,自引:3,他引:20       下载免费PDF全文
《The Journal of cell biology》1984,99(5):1559-1568
The centromere region of Saccharomyces cerevisiae chromosome III has been replaced by various DNA fragments from the centromere regions of yeast chromosomes III and XI. A 289-base pair centromere (CEN3) sequence can stabilize yeast chromosome III through mitosis and meiosis. The orientation of the centromeric fragments within chromosome III has no effect on the normal mitotic or meiotic behavior of the chromosome. The structural integrity of the centromere region in these genomic substitution strains was examined by mapping nucleolytic cleavage sites within the chromatin DNA. A nuclease-protected centromere core of 220-250 base pairs was evident in all of the genomic substitution strains. The position of the protected region is determined strictly by the centromere DNA sequence. These results indicate that the functional centromere core is contained within 220- 250 base pairs of the chromatin DNA that is structurally distinct from the flanking nucleosomal chromatin.  相似文献   

5.
Centromeric DNA in the fission yeast Schizosaccharomyces pombe was isolated by chromosome walking and by field inversion gel electrophoretic fractionation of large genomic DNA restriction fragments. The centromere regions of the three chromosomes were contained on three SalI fragments (120 kilobases [kb], chromosome III; 90 kb, chromosome II; and 50 kb, chromosome I). Each fragment contained several repetitive DNA sequences, including repeat K (6.4 kb), repeat L (6.0 kb), and repeat B, that occurred only in the three centromere regions. On chromosome II, these repeats were organized into a 35-kb inverted repeat that included one copy of K and L in each arm of the repeat. Site-directed integration of a plasmid containing the yeast LEU2 gene into K repeats at each of the centromeres or integration of an intact K repeat into a chromosome arm had no effect on mitotic or meiotic centromere function. The centromeric repeat sequences were not transcribed and possessed many of the properties of constitutive heterochromatin. Thus, S. pombe is an excellent model system for studies on the role of repetitive sequence elements in centromere function.  相似文献   

6.
M. Molnar  J. Bahler  M. Sipiczki    J. Kohli 《Genetics》1995,141(1):61-73
The fission yeast Schizosaccharomyces pombe does not form tripartite synaptonemal complexes during meiotic prophase, but axial core-like structures (linear elements). To probe the relationship between meiotic recombination and the structure, pairing, and segregation of meiotic chromosomes, we genetically and cytologically characterized the rec8-110 mutant, which is partially deficient in meiotic recombination. The pattern of spore viability indicates that chromosome segregation is affected in the mutant. A detailed segregational analysis in the rec8-110 mutant revealed more spores disomic for chromosome III than in a wild-type strain. Aberrant segregations are caused by precocious segregation of sister chromatids at meiosis I, rather than by nondisjunction as a consequence of lack of crossovers. In situ hybridization further showed that the sister chromatids are separated prematurely during meiotic prophase. Moreover, the mutant forms aberrant linear elements and shows a shortened meiotic prophase. Meiotic chromosome pairing in interstitial and centromeric regions is strongly impaired in rec8-110, whereas the chromosome ends are less deficient in pairing. We propose that the rec8 gene encodes a protein required for linear element formation and that the different phenotypes of rec8-110 reflect direct and indirect consequences of the absence of regular linear elements.  相似文献   

7.
A functional centromere located on a small DNA restriction fragment from Saccharomyces cerevisiae was identified as CEN14 by integrating centromere-adjacent DNA plus the URA3 gene by homologous recombination into the yeast genome and then by localizing the URA3 gene to chromosome XIV by standard tetrad analysis. DNA sequence analysis revealed that CEN14 possesses sequences (elements I, II, and III) that are characteristic of other yeast centromeres. Mitotic and meiotic analyses indicated that the CEN14 function resides on a 259-base-pair (bp) RsaI-EcoRV restriction fragment, containing sequences that extend only 27 bp to the right of the element I to III region. In conjunction with previous findings on CEN3 and CEN11, these results indicate that the specific DNA sequences required in cis for yeast centromere function are contained within a region about 150 bp in length.  相似文献   

8.
DNA was isolated from a circular derivative of chromosome III to prepare a library of recombinant plasmids enriched in chromosome III sequences. An ordered set of recombinant plasmids and bacteriophages carrying the contiguous 210-kilobase region of chromosome III between the HML and MAT loci was identified, and a complete restriction map was prepared with BamHI and EcoRI. Using the high frequency transformation assay and extensive subcloning, 13 ARS elements were mapped in the cloned region. Comparison of the physical maps of chromosome III from three strains revealed that the chromosomes differ in the number and positions of Ty elements and also show restriction site polymorphisms. A comparison of the physical map with the genetic map shows that meiotic recombination rates vary at least tenfold along the length of the chromosome.  相似文献   

9.
The linear chromosomes of eukaryotes contain specialized structures to ensure their faithful replication and segregation to daughter cells. Two of these structures, centromeres and telomeres, are limited, respectively, to one and two copies per chromosome. It is possible that the proteins that interact with centromere and telomere DNA sequences are present in limiting amounts and could be competed away from the chromosomal copies of these elements by additional copies introduced on plasmids. We have introduced excess centromeres and telomeres into Saccharomyces cerevisiae and quantitated their effects on the rates of loss of chromosome III and chromosome VII by fluctuation analysis. We show that (i) 600 new telomeres have no effect on chromosome loss; (ii) an average of 25 extra centromere DNA sequences increase the rate of chromosome III loss from 0.4 x 10(-4) events per cell division to 1.3 x 10(-3) events per cell division; (iii) centromere DNA (CEN) sequences on circular vectors destabilize chromosomes more effectively than do CEN sequences on 15-kb linear vectors, and transcribed CEN sequences have no effect on chromosome stability. We discuss the different effects of extra centromere and telomere DNA sequences on chromosome stability in terms of how the cell recognizes these two chromosomal structures.  相似文献   

10.
This report describes a fluorescence in situ hybridization approach to chromosome staining that facilitates detection of structural aberrations and allows discrimination between dicentric chromosomes and symmetrically translocated chromosomes. In this approach, selected whole chromosomes are stained in one color by hybridization with composite probes whose elements have DNA sequence homology along the length of the target chromosomes. In addition, all chromosomes are counterstained with a DNA specific dye so that structural aberrations between target and non-target chromosomes are clearly visible. Discrimination between dicentric chromosomes and symmetrical translocations is accomplished by hybridization with a second probe that is homologous to DNA sequences found in the centromeric region of all chromosomes. The centromeric marker is visualized in a different color, so that the number of centromeres per aberrant chromosome can be rapidly determined in the microscope by changing excitation and fluorescence filters.by H.F. Willard  相似文献   

11.
We introduced CEN6 DNA via integrative transformation into the right arm of chromosome II in a haploid Saccharomyces cerevisiae strain thus creating a dicentric chromosome. The majority of the transformed cells did not grow into colonies as concluded from control transformations with mutated CEN6 DNA. Five percent of the initial transformants with the wild-type centromere gave rise to well growing cells. We analysed the probable fate of the dicentric chromosome in two transformants by electrophoretic separation of chromosome sized DNA and by hybridizations with chromosome II DNA probes. We found two different mechanisms which generated cells lacking dicentric chromosomes. The first mechanism is breakage of the chromatid between the two-centromeres and healing of the new ends to functional telomeres thus creating progeny cells with the chromosome II information split into two genetically stable new chromosomes one carrying CEN2 and the other CEN6. The second mechanism is loss of the resident CEN2 by a 30-50 kb deletion event which resulted in a genetically stable but shortened chromosome II. Both mechanisms operated in the two transformants studied.  相似文献   

12.
Nonomura K  Kurata N 《Chromosoma》2001,110(4):284-291
The large-scale primary structure of the centromeric region of rice chromosome 5 was analyzed, the first example in a cereal species. The yeast artificial chromosome (YAC) and bacterial artificial chromosome (BAC) contigs aligned on the centromere of rice chromosome 5 (CEN5) covered a distance of more than 670 kb. Strong suppression of genetic recombination, one of the features of a functional centromere, occurred along the contig region. The most remarkable feature of CEN5 is the composition of the multiple repetitive elements. Oryza-specific RCS2 short tandem repeats were clustered along less than 100 kb at one end of the contig. At least 15 copies of the conserved domain of the 1.9 kb RCE1 centromeric repeats, which are similar to the long terminal repeats (LTRs) of gypsy-type retrotransposon RIRE7, were dispersed mainly in 320 kb stretches next to RCS2 tandem clusters. Many copies of the LTR-like sequences of RIRE3 and RIRE8, another gypsy-type retrotransposon, were also found throughout the contig. On the other hand, the gagpol region was less conserved in the contig. These results indicate that the rice centromere is composed of multiple repetitive sequences with the RCS2 tandem cluster probably being situated as the core of a functional centromere of some hundreds of kilobases to megabases in length.  相似文献   

13.
We constructed Aspergillus nidulans transformation plasmids containing the A. nidulans argB+ gene and either containing or lacking centromeric DNA from Saccharomyces cerevisiae chromosome XI (CEN11). The plasmids transformed an argB Aspergillus strain to arginine independence at indistinguishable frequencies. Stable haploid transformants were obtained with both plasmids, and strains were identified in which the plasmids had integrated into chromosome III by homologous recombination at the argB locus. Plasmid DNA was recovered from a transformant containing CEN11, and the sequence of the essential portion of CEN11 was determined to be unaltered. The transformants were further characterized by using them to construct heterozygous diploids and then testing the diploids for preferential loss of the plasmid-containing chromosomes. The CEN11 sequence had little or no effect on chromosome stability. Thus, CEN11 does not prevent chromosomal integration of plasmid DNA and probably lacks centromere activity in Aspergillus spp.  相似文献   

14.
D. D. Sears  J. H. Hegemann  J. H. Shero    P. Hieter 《Genetics》1995,139(3):1159-1173
We have employed a system that utilizes homologous pairs of human DNA-derived yeast artificial chromosomes (YACs) as marker chromosomes to assess the specific role (s) of conserved centromere DNA elements (CDEI, CDEII and CDEIII) in meiotic chromosome disjunction fidelity. Thirteen different centromere (CEN) mutations were tested for their effects on meiotic centromere function. YACs containing a wild-type CEN DNA sequence segregate with high fidelity in meiosis I (99% normal segregation) and in meiosis II (96% normal segregation). YACs containing a 31-bp deletion mutation in centromere DNA element II (CDEIIδ31) in either a heterocentric (mutant/wild type), homocentric (mutant/mutant) or monosomic (mutant/--) YAC pair configuration exhibited high levels (16-28%) of precocious sister-chromatid segregation (PSS) and increased levels (1-6%) of nondisjunction meiosis I (NDI). YACs containing this mutation also exhibit high levels (21%) of meiosis II nondisjunction. Interestingly, significant alterations in homolog recombination frequency were observed in the exceptional PSS class of tetrads, suggesting unusual interactions between prematurely separated sister chromatids and their homologous nonsister chromatids. We also have assessed the meiotic segregation effects of rare gene conversion events occurring at sites located immediately adjacent to or distantly from the centromere region. Proximal gene conversion events were associated with extremely high levels (60%) of meiosis I segregation errors (including both PSS and NDI), whereas distal events had no apparent effect. Taken together, our results indicate a critical role for CDEII in meiosis and underscore the importance of maintaining sister-chromatid cohesion for proper recombination in meiotic prophase and for proper disjunction in meiosis I.  相似文献   

15.
Healing of Broken Linear Dicentric Chromosomes in Yeast   总被引:31,自引:8,他引:23       下载免费PDF全文
In yeast, meiotic recombination between a linear chromosome III and a haploid-viable circular chromosome will yield a dicentric, tandemly duplicated chromosome. Spores containing apparently intact dicentric chromosomes were recovered from tetrads with three viable spores. The spore containing the dicentric inherited URA3 (part of the recombinant DNA used to join regions near the ends of the chromosome into a circle) as well as HML, HMR and MAL2 (located near the two ends of a linear but deleted from the circle). The Ura+ Mal+ colonies were highly variegated, giving rise to as many as seven distinctly different stable ("healed") derivatives, some of which were Ura+ Mal +, others Ura+ Mal- and others Ura - Mal+. The colonies were also sectored for five markers (HIS4, LEU2, CRY1, MAT and THR4) initially heterozygous in the tandemly duplicated dicentric chromosome.—Southern blot and genetic analyses have demonstrated that these stable derivatives arose from mitotic break-age of the dicentric chromosome, followed by one of several different healing events. The majority of the stable derivatives contained circular or linear chromosomes apparently resulting from homologous recombination between a broken chromosome end and a homologous region on the other end of the original dicentric duplicated chromosome. A smaller proportion of events resulted in apparently uniquely healed linear chromosomes in which the broken chromosome acquired a new telomere. In two instances we recovered chromosome III partially duplicated with a novel right end. We have also found one derivative that had also experienced rearrangement of repeated DNA sequences found adjacent to yeast telomeres.  相似文献   

16.
Enological strains of Saccharomyces cerevisiae display a high level of chromosome length polymorphism, but the molecular basis of this phenomenon has not yet been clearly defined. In order to gain further insight into the molecular mechanisms responsible for the karyotypic variability, we examined the chromosomal constitution of a strain known to possess aberrant chromosomes. Our data revealed that the strain carries four rearranged chromosomes resulting from two reciprocal translocations between chromosomes III and I, and chromosomes III and VII. The sizes of the chromosomal fragments exchanged through translocation range from 40 to 150?kb. Characterization of the breakpoints indicated that the translocations involved the RAHS of chromosome III, a transposition hot-spot on the right arm of chromosome I and a region on the left arm of chromosome VII. An analysis of the junctions showed that in all cases Ty elements were present and suggested that the translocations result from recombination between transposable Ty elements. The evidence for multiple translocations mediated by Ty elements in a single strain suggests that spontaneous Ty-driven rearrangement could be quite common and may play a major role in the alteration of karyotypes in natural and industrial yeasts.  相似文献   

17.
The most striking region of structural differentiation of a eukaryotic chromosome is the kinetochore. This chromosomal domain plays an integral role in the stability and propagation of genetic material to the progeny cells during cell division. The DNA component of this structure, which we refer to as the centromere, has been localized to a small region of 220–250 base pairs within the chromosomes from the yeast Saccharomyces cerevisiae. The centromere DNA (CEN) is organized in a unique structure in the cell nucleus and is required for chromosome stability during both mitotic and meiotic cell cycles. The centromeres from one chromosome can stabilize small circular minichromosomes or other yeast chromosomes. The centromeres may therefore interact with the same components of the segregation apparatus regardless of the chromosome in which they reside. The CEN DNA does not encode any regulatory RNAs or proteins, but rather is a cis-acting element that provides genetic stability to adjacent DNA sequences.  相似文献   

18.
Chromosome length controls mitotic chromosome segregation in yeast   总被引:37,自引:0,他引:37  
A W Murray  N P Schultes  J W Szostak 《Cell》1986,45(4):529-536
We have examined the effect of physical length on the mitotic segregation of artificial chromosomes and fragments of natural yeast chromosomes. Increasing the length of artificial chromosomes decreases the rate at which they are lost during mitosis. We have made fragments of chromosome III by integrating new telomeres at different positions along the length of the chromosome. Chromosome fragments of 42 and 72 kb behave like artificial chromosomes: they are lost in mitosis much more frequently than natural chromosomes. In contrast, a chromosome fragment of 150 kb is as mitotically stable as the full-length chromosome from which it is derived. The structural instability of a short dicentric artificial chromosome demonstrates that, although short artificial chromosomes segregate poorly in mitosis, they do attach to the mitotic spindle. We discuss these results in the context of a model in which chromosome segregation is directed by the intercatenation of the segregating DNA molecules.  相似文献   

19.
We have characterized 17 rob(13q14q) Robertsonian translocations, using six molecular probes that hybridize to the repetitive sequences of the centromeric and shortarm regions of the five acrocentric chromosomes by FISH. The rearrangements include six de novo rearrangements and the chromosomally normal parents, five maternally and three paternally inherited translocations, and three translocations of unknown origin. The D21Z1/D13Z1 and D14Z1/D22Z1 centromeric alpha-satellite DNA probes showed all rob(13q14q) chromosomes to be dicentric. The rDNA probes did not show hybridization on any of the 17 cases studied. The pTRS-47 satellite III DNA probe specific for chromosomes 14 and 22 was retained around the breakpoints in all cases. However, the pTRS-63 satellite III DNA probe specific for chromosome 14 did not show any signals on the translocation chromosomes examined. In 16 of 17 translocations studied, strong hybridization signals on the translocations were detected with the pTRI-6 satellite I DNA probe specific for chromosome 13. All parents of the six de novo rob(13q14q), including one whose pTRI-6 sequence was lost, showed strong positive hybridization signals on each pair of chromosomes 14 and 13, with pTRS-47, pTRS-63, and pTRI-6. Therefore, the translocation breakpoints in the majority of rob(13q14q) are between the pTRS-47 and pTRS-63 sequences in the p11 region of chromosome 14 and between the pTRI-6 and rDNA sequences within the p11 region of chromosome 13.  相似文献   

20.
Enological strains of Saccharomyces cerevisiae display a high level of chromosome length polymorphism, but the molecular basis of this phenomenon has not yet been clearly defined. In order to gain further insight into the molecular mechanisms responsible for the karyotypic variability, we examined the chromosomal constitution of a strain known to possess aberrant chromosomes. Our data revealed that the strain carries four rearranged chromosomes resulting from two reciprocal translocations between chromosomes III and I, and chromosomes III and VII. The sizes of the chromosomal fragments exchanged through translocation range from 40 to 150 kb. Characterization of the breakpoints indicated that the translocations involved the RAHS of chromosome III, a transposition hot-spot on the right arm of chromosome I and a region on the left arm of chromosome VII. An analysis of the junctions showed that in all cases Ty elements were present and suggested that the translocations result from recombination between transposable Ty elements. The evidence for multiple translocations mediated by Ty elements in a single strain suggests that spontaneous Ty-driven rearrangement could be quite common and may play a major role in the alteration of karyotypes in natural and industrial yeasts. Received: 18 December 1998 / Accepted: 26 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号