首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ATP-binding cassette protein A1 (ABCA1) is a key plasma membrane protein required for the efflux of cellular cholesterol to extracellular acceptors, particularly to apolipoprotein A-I (apoA-I). This process is essential to maintain cholesterol homeostasis in the body. The detailed molecular mechanisms, however, are still insufficiently understood. Also, the molecular identity of ABCA1, i.e., channel, pump, or flippase, remains unknown. In this study we analyzed extracellular ATP levels in the medium of ABCA1-expressing BHK cells and RAW macrophages and compared them to the medium of nonexpressing cells. We found that extracellular ATP concentrations are significantly elevated when cells express ABCA1. Importantly, a dysfunctional ABCA1 mutant (A937V), when expressed similarly as wild-type ABCA1, is unable to raise extracellular ATP concentration, which suggests a casual relationship between functional ABCA1 and elevated extracellular ATP. To explore the physiological role of extracellular ATP, we analyzed ABCA1-mediated cholesterol efflux under conditions where extracellular ATP levels were modulated. We found that increasing extracellular ATP within the physiological range, i.e., <μM, promotes cholesterol efflux to apoA-I. On the other hand, removing extracellular ATP, either by adding apyrase to the medium or by expressing a plasma membrane-bound ectonucleotidase, CD39, abolishes cholesterol efflux to apoA-I. On the basis of these results, we conclude that, through direct or indirect mechanisms, ABCA1 functions to raise ATP levels in the medium. This elevated extracellular ATP is required for ABCA1-mediated cholesterol efflux to apoA-I.  相似文献   

2.
正三磷酸腺苷结合盒转运体A1(ATP-binding cassette transporter A1,ABCA1)作为介导细胞内脂质流出,维持细胞脂质代谢平衡的重要跨膜蛋白,对动脉粥样硬化(atherosclerosis,AS)的防治具有重要意义[1].近日,清华大学结构生物学高精尖创新中心的颜宁教授与龚欣博士组成的研究团队(Cell,2017,169:1228-1239)采用冷冻电子显微镜技术,经过重组人全长ABCA1蛋白制备、透射电子显微  相似文献   

3.
Apolipoprotein mimetic peptides are short amphipathic peptides that efflux cholesterol from cells by the ABCA1 transporter and are being investigated as therapeutic agents for cardiovascular disease. We examined the role of helix stabilization of these peptides in cholesterol efflux. A 23-amino acid long peptide (Ac-VLEDSFKVSFLSALEEYTKKLNTQ-NH2) based on the last helix of apoA-I (A10) was synthesized, as well as two variants, S1A10 and S2A10, in which the third and fourth and third and fifth turn of each peptide, respectively, were covalently joined by hydrocarbon staples. By CD spectroscopy, the stapled variants at 24 °C were more helical in aqueous buffer than A10 (A10 17%, S1A10 62%, S2A10 97%). S1A10 and S2A10 unlike A10 were resistant to proteolysis by pepsin and chymotrypsin. S1A10 and S2A10 showed more than a 10-fold increase in cholesterol efflux by the ABCA1 transporter compared to A10. In summary, hydrocarbon stapling of amphipathic peptides increases their helicity, makes them resistant to proteolysis and enhances their ability to promote cholesterol efflux by the ABCA1 transporter, indicating that this peptide modification may be useful in the development of apolipoprotein mimetic peptides.  相似文献   

4.
PCD (programmed cell death) in plants presents important morphological and biochemical differences compared with apoptosis in animal cells. This raises the question of whether PCD arose independently or from a common ancestor in plants and animals. In the present study we describe a cell-free system, using wheat grain nucellar cells undergoing PCD, to analyse nucleus dismantling, the final stage of PCD. We have identified a Ca2+/Mg2+ nuclease and a serine protease localized to the nucleus of dying nucellar cells. Nuclear extracts from nucellar cells undergoing PCD triggered DNA fragmentation and other apoptotic morphology in nuclei from different plant tissues. Inhibition of the serine protease did not affect DNA laddering. Furthermore, we show that the nuclear extracts from plant cells triggered DNA fragmentation and apoptotic morphology in nuclei from human cells. The inhibition of the nucleolytic activity with Zn2+ or EDTA blocked the morphological changes of the nucleus. Moreover, nuclear extracts from apoptotic human cells triggered DNA fragmentation and apoptotic morphology in nuclei from plant cells. These results show that degradation of the nucleus is morphologically and biochemically similar in plant and animal cells. The implication of this finding on the origin of PCD in plants and animals is discussed.  相似文献   

5.
ABCG1, one of the half-type ATP binding cassette (ABC) proteins, mediates the efflux of cholesterol to HDL and functions in the reverse cholesterol transport from peripheral cells to the liver. We have shown that ABCG1 mediates the efflux of not only cholesterol but also sphingomyelin (SM) and phosphatidylcholine. Because SM preferentially associates with cholesterol, we examined whether it plays an important role in the ABCG1-mediated efflux of cholesterol. The efflux of cholesterol and SM mediated by ABCG1 was reduced in a mutant CHO-K1 cell line, LY-A, in which the cellular SM level is reduced because of a mutation of the ceramide transfer protein CERT. In contrast, CHO-K1 cells overexpressing CERT showed an increased efflux of cholesterol and SM mediated by ABCG1. The sensitivity of cells to methyl-beta-cyclodextrin suggested that cholesterol in nonraft domains was increased due to the disruption of raft domains in LY-A cells. These results suggest that the ABCG1-mediated efflux of cholesterol and SM is dependent on the cellular SM level and distribution of cholesterol in the plasma membrane.  相似文献   

6.
7.
ATP binding cassette protein A1 (ABCA1) plays a major role in cholesterol homeostasis and high density lipoprotein (HDL) metabolism. It is proposed that ABCA1 reorganizes the plasma membrane and generates more loosely packed domains that facilitate apoA-I-dependent cholesterol efflux. In this study, we examined the effects of the cellular sphingomyelin level on HDL formation by ABCA1 by using a Chinese hamster ovary-K1 mutant cell line, LY-A, which has a missense mutation in the ceramide transfer protein CERT. When LY-A cells were cultured in Nutridoma-BO medium and sphingomyelin content was reduced, apoA-I-dependent cholesterol efflux by ABCA1 from LY-A cells increased 1.65-fold compared with that from LY-A/CERT cells stably transfected with human CERT cDNA. Exogenously added sphingomyelin significantly reduced the apoA-I-dependent efflux of cholesterol from LY-A cells, confirming that the decrease in sphingomyelin content in the plasma membrane stimulates cholesterol efflux by ABCA1. The amount of cholesterol available to cold methyl-beta-cyclodextrin (MbetaCD) extraction from LY-A cells was increased by 40% by the expression of ABCA1 and was 1.6-fold higher than that from LY-A/CERT cells. This step in ABCA1 function, making cholesterol available to cold MbetaCD, was independent of apoA-I. These results suggest that the function of ABCA1 could be divided into two steps: (i) a flopping step to move phosphatidylcholine and cholesterol from the inner to outer leaflet of the plasma membrane, where cholesterol becomes available to cold MbetaCD extraction, and (ii) a loading step to load phosphatidylcholine and cholesterol onto apoA-I to generate HDL.  相似文献   

8.
9.
Studies have shown a negative association between cellular cholesterol efflux and coronary artery disease (CAD). Standard protocol for quantitating cholesterol efflux involves labeling cells with [(3)H]cholesterol and measuring release of the labeled sterol. Using [(3)H]cholesterol is not ideal for the development of a high-throughput assay to screen large numbers of serum as would be required in studying the link between efflux and CAD. We compared efflux using a fluorescent sterol (boron dipyrromethene difluoride linked to sterol carbon-24, BODIPY-cholesterol) with that of [(3)H]cholesterol in J774 macrophages. Fractional efflux of BODIPY-cholesterol was significantly higher than that of [(3)H]cholesterol when apo A-I, HDL(3), or 2% apoB-depleted human serum were used as acceptors. BODIPY-cholesterol efflux correlated significantly with [(3)H]cholesterol efflux (p < 0.0001) when apoB-depleted sera were used. The BODIPY-cholesterol efflux correlated significantly with preβ-1 (r(2) = 0.6) but not with total HDL-cholesterol. Reproducibility of the BODIPY-cholesterol efflux assay was excellent between weeks (r(2) = 0.98, inter-assay CV = 3.31%). These studies demonstrate that BODIPY-cholesterol provides an efficient measurement of efflux compared with [(3)H]cholesterol and is a sensitive probe for ABCA1-mediated efflux. The increased sensitivity of BODIPY-cholesterol assay coupled with the simplicity of measuring fluorescence results in a sensitive, high-throughput assay that can screen large numbers of sera, and thus establish the relationship between cholesterol efflux and atherosclerosis.  相似文献   

10.
Prior studies provide data supporting the notion that ATP binding cassette transporter A1 (ABCA1) promotes lipid efflux to extracellular acceptors in a two-step process: first, ABCA1 mediates phospholipid efflux to an apolipoprotein, and second, this apolipoprotein-phospholipid complex accepts free cholesterol in an ABCA1-independent manner. In the current study using RAW264.7 cells, ABCA1-mediated free cholesterol and phospholipid efflux to apolipoprotein A-I (apoA-I) were tightly coupled to each other both temporally and after treatment with ABCA1 inhibitors. The time course and temperature dependence of ABCA1-mediated lipid efflux to apoA-I support a role for endocytosis in this process. Cyclodextrin treatment of RAW264.7 cells partially inhibited 8Br-cAMP-induced efflux of free cholesterol and phospholipid to apoA-I. ABCA1-expressing cells are more sensitive to cell damage by high-dose cyclodextrin and vanadate, leading to increased lactate dehydrogenase leakage and phospholipid release even in the absence of the acceptor apoA-I. Finally, we could not reproduce a two-step effect on lipid efflux using conditioned medium from ABCA1-expressing cells pretreated with cyclodextrin.  相似文献   

11.
ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in apoA-I lipidation, a key step in reverse cholesterol transport. cAMP induces apoA-I binding activity and promotes cellular cholesterol efflux. We investigated the role of the cAMP/protein kinase A (PKA) dependent pathway in the regulation of cellular cholesterol efflux. Treatment of normal fibroblasts with 8-bromo-cAMP (8-Br-cAMP) increased significantly apoA-I-mediated cholesterol efflux, with specificity for apoA-I, but not for cyclodextrin. Concomitantly, 8-Br-cAMP increased ABCA1 phosphorylation in a time-dependent manner. Maximum phosphorylation was reached in <10 min, representing a 260% increase compared to basal ABCA1 phosphorylation level. Forskolin, a known cAMP regulator, increased both cellular cholesterol efflux and ABCA1 phosphorylation. In contrast, H-89 PKA inhibitor reduced cellular cholesterol efflux by 70% in a dose-dependent manner and inhibited almost completely ABCA1 phosphorylation. To determine whether naturally occurring mutants of ABCA1 may affect its phosphorylation activity, fibroblasts from subjects with familial HDL deficiency (FHD, heterozygous ABCA1 defect) and Tangier disease (TD, homozygous/compound heterozygous ABCA1 defect) were treated with 8-Br-cAMP or forskolin. Cellular cholesterol efflux and ABCA1 phosphorylation were increased in FHD but not in TD cells. Taken together, these findings provide evidence for a link between the cAMP/PKA-dependent pathway, ABCA1 phosphorylation, and apoA-I mediated cellular cholesterol efflux.  相似文献   

12.
The cholesterol biosynthetic pathway produces numerous signaling molecules. Oxysterols through liver X receptor (LXR) activation regulate cholesterol efflux, whereas the non-sterol mevalonate metabolite, geranylgeranyl pyrophosphate (GGPP), was recently demonstrated to inhibit ABCA1 expression directly, through antagonism of LXR and indirectly through enhanced RhoA geranylgeranylation. We used HMG-CoA reductase inhibitors (statins) to test the hypothesis that reduced synthesis of mevalonate metabolites would enhance cholesterol efflux and attenuate foam cell formation. Preincubation of THP-1 macrophages with atorvastatin, dose dependently (1-10 microm) stimulated cholesterol efflux to apolipoprotein AI (apoAI, 10-60%, p < 0.05) and high density lipoprotein (HDL(3)) (2-50%, p < 0.05), despite a significant decrease in cholesterol synthesis (2-90%). Atorvastatin also increased ABCA1 and ABCG1 mRNA abundance (30 and 35%, p < 0.05). Addition of mevalonate, GGPP or farnesyl pyrophosphate completely blocked the statin-induced increase in ABCA1 expression and apoAI-mediated cholesterol efflux. A role for RhoA was established, because two inhibitors of Rho protein activity, a geranylgeranyl transferase inhibitor and C3 exoenzyme, increased cholesterol efflux to apoAI (20-35%, p < 0.05), and macrophage expression of dominant-negative RhoA enhanced cholesterol efflux to apoAI (20%, p < 0.05). In addition, atorvastatin increased the RhoA levels in the cytosol fraction and decreased the membrane localization of RhoA. Atorvastatin treatment activated peroxisome proliferator activated receptor gamma and increased LXR-mediated gene expression suggesting that atorvastatin induces cholesterol efflux through a molecular cascade involving inhibition of RhoA signaling, leading to increased peroxisome proliferator activated receptor gamma activity, enhanced LXR activation, increased ABCA1 expression, and cholesterol efflux. Finally, statin treatment inhibited cholesteryl ester accumulation in macrophages challenged with atherogenic hypertriglyceridemic very low density lipoproteins indicating that statins can regulate foam cell formation.  相似文献   

13.
14.
Myristica fragrans is a traditional herbal medicine and has been shown to alleviate the development of atherosclerosis.However,the anti-atherogenic mechanisms of M.fragrans are still to be addressed.In this study,we explored the effect of M.fragrans on lipid metabolism and inflammation and its mechanisms in THP-1-derived macrophages.The quantitative polymerase chain reaction and western blot analysis results showed that M.fragrans promotes cholesterol efflux from THP-1-derived macrophages and reduces intracellular total cholesterol,cholesterol ester,and free cholesterol contents in a dose-and a time-dependent manner.Further study found that liver X receptor alpha(LXRα)antagonist GGPP significantly blocked the upregulation of ABCA1 expression with M.fragrans treatment.In addition,chromatin immunoprecipitation assay confirmed that GATA binding protein 3(GATA3)can bind to the LXRαpromoter,and inhibition of GATA3 led to the downregulation of LXRαand ATP-binding cassette subfamily A member 1 expression.Furthermore,M.fragrans reduced lipid accumulation,followed by decreasing tumor necrosis factor-α,interleukin(IL)-6,and IL-1βand increasing IL-10 produced by THP-1-derived macrophages.Therefore,M.fragrans is identified as a valuable therapeutic medicine for atherosclerotic cardiovascular disease.  相似文献   

15.
Apolipoproteins, such as apolipoprotein A-I (apoA-I), can stimulate cholesterol efflux from cells expressing the ATP binding cassette transporter A1 (ABCA1). The nature of the molecular interaction between these cholesterol acceptors and ABCA1 is controversial, and models suggesting a direct protein-protein interaction or indirect association have been proposed. To explore this issue, we performed competition binding and chemical cross-linking assays using six amphipathic plasma proteins and an 18 amino acid amphipathic helical peptide. All seven proteins stimulated lipid efflux and inhibited the cross-linking of apoA-I to ABCA1. Cross-linking of apoA-I to ABCA1 was saturable and occurred at high affinity (Kd of 7.0 +/- 1.9 nM), as was cross-linking of apoA-II. After binding to ABCA1, apoA-I rapidly dissociated (half-life of 25 min) from the complex and was released back into the medium. A mutant form of ABCA1 (W590S) that avidly binds apoA-I but fails to promote cholesterol efflux released apoA-I with similar kinetics but without transfer of cholesterol to apoA-I. Thus, a high-affinity, saturable, protein-protein interaction occurs between ABCA1 and all of its amphipathic protein ligands. Dissociation of the complex leads to the cellular release of cholesterol and the apolipoprotein. However, dissociation is not dependent on cholesterol transfer, which is a clearly separable event, distinguishable by ABCA1 mutants.  相似文献   

16.
ATP cassette binding protein 1 (ABCA1) controls the apolipoprotein-mediated cholesterol efflux pathway and determines plasma HDL levels. Although cAMP is known to promote ABCA1 expression and cholesterol efflux from cells, it has not been determined whether cyclic nucleotide phosphodiesterase (PDE) isoforms regulate this pathway. We show that rolipram and cilomilast, inhibitors of cAMP-specific PDE4, increase apolipoprotein A-I (apoA-I)-mediated cholesterol efflux up to 80 and 140% in human THP-1 and mouse J774.A1 macrophages, respectively, concomitant with an elevation of cAMP levels. The EC(50) value was estimated to be 1 to 2 microM for both inhibitors. Rolipram and cilomilast also increase ABCA1 protein expression in THP-1 and J774.A1 macrophages. Thus, PDE4 inhibitors cause parallel increases in cAMP levels, ABCA1 expression and apoA-I-mediated cholesterol efflux. PDE4 inhibitors may provide a novel strategy for the treatment of cardiovascular disease by mobilizing cholesterol from atherosclerotic lesions.  相似文献   

17.
We evaluated the impact of gender differences in both the quantitative and qualitative features of HDL subspecies on cellular free cholesterol efflux through the scavenger receptor class B type I (SR-BI), ABCA1, and ABCG1 pathways. For that purpose, healthy subjects (30 men and 26 women) matched for age, body mass index, triglyceride, apolipoprotein A-I, and high density lipoprotein-cholesterol (HDL-C) levels were recruited. We observed a significant increase (+14%; P < 0.03) in the capacity of whole sera from women to mediate cellular free cholesterol efflux via the SR-BI-dependent pathway compared with sera from men. Such enhanced efflux capacity resulted from a significant increase in plasma levels of large cholesteryl ester-rich HDL2 particles (+20%; P < 0.04) as well as from an enhanced capacity (+14%; P < 0.03) of these particles to mediate cellular free cholesterol efflux via SR-BI. By contrast, plasma from men displayed an enhanced free cholesterol efflux capacity (+31%; P < 0.001) via the ABCA1 transporter pathway compared with that from women, which resulted from a 2.4-fold increase in the plasma level of prebeta particles (P < 0.008). Moreover, in women, SR-BI-mediated cellular free cholesterol efflux was significantly correlated with plasma HDL-C (r = 0.72, P < 0.0001), whereas this relationship was not observed in men. In conclusion, HDL-C level may not represent the absolute indicator of the efficiency of the initial step of the reverse cholesterol transport.  相似文献   

18.
19.
Defects in the gene encoding for the ATP binding cassette (ABC) transporter A1 (ABCA1) were shown to be one of the genetic causes for familial hypoalphalipoproteinemia (FHA). We investigated the role of ABCA1-mediated cholesterol efflux in Dutch subjects suffering from FHA. Eighty-eight subjects (mean HDL cholesterol levels 0.63 +/- 0.21 mmol/l) were enrolled. Fibroblasts were cultured and loaded with [3H]cholesterol. ABCA1 and non-ABCA1-mediated efflux was studied by using apolipoprotein A-I (apoA-I), HDL, and methyl-beta-cyclodextrin as acceptors. Efflux to apoA-I was decreased in four patients (4/88, 4.5%), and in all cases, a mutation in the ABCA1 gene was found. In the remaining 84 subjects, no correlation between efflux and apoA-I or HDL cholesterol was found. Efflux to both HDL and cyclodextrin, in contrast, did correlate with HDL cholesterol plasma levels (r = 0.34, P = 0.01; and r = 0.27, P = 0.008, respectively). The prevalence of defects in ABCA1-dependent cholesterol efflux in Dutch FHA patients is low. The significant correlation between plasma HDL cholesterol levels and methyl-beta-cyclodextrin-mediated efflux in the FHA patients with normal ABCA1 function suggests that non-ABCA1-mediated efflux might also be important for plasma HDL cholesterol levels in these individuals.  相似文献   

20.
The ATP-binding cassette transporter A1 (ABCA1) participates in the efflux of cholesterol from cells. It remains unclear whether ABCA1 functions to efflux cholesterol across the basolateral or apical membrane of the intestine. We used a chicken model of ABCA1 dysfunction, the Wisconsin hypoalpha mutant (WHAM) chicken, to address this issue. After an oral gavage of radioactive cholesterol, the percentage appearing in the bloodstream was reduced by 79% in the WHAM chicken along with a 97% reduction in the amount of tracer in high density lipoprotein. In contrast, the percentage of radioactive cholesterol absorbed from the lumen into the intestine was not affected by the ABCA1 mutation. Liver X receptor (LXR) agonists have been inferred to decrease cholesterol absorption through activation of ABCA1 expression. However, the LXR agonist T0901317 decreased cholesterol absorption equally in both wild type and WHAM chickens, indicating that the effect of LXR activation on cholesterol absorption is independent of ABCA1. The ABCA1 mutation resulted in accumulation of radioactive cholesterol ester in the intestine and the liver of the WHAM chicken (5.0- and 4.4-fold, respectively), whereas biliary lipid concentrations were unaltered by the WHAM mutation. In summary, ABCA1 regulates the efflux of cholesterol from the basolateral but not apical membrane in the intestine and the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号