共查询到20条相似文献,搜索用时 0 毫秒
1.
《Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism》1980,617(1):156-160
The localization of β-oxidation of fatty acids in isolated peroxisomes from rat liver was investigated. The enzyme system is soluble in the luminal compartment and carnitine does not appear to be involved in the transfer of the CoA derivatives through the peroxisomal membrane. Experiments involving proteolysis, inhibitors and competitive inhibition suggest that a fatty acid binding protein is responsible for the carrier process. This carrier protein seems to be present in increased amounts both in the supernatant and in the peroxisomes after clofibrate induction. 相似文献
2.
Asayama Kohtaro Asayama Kohtaro Sandhir Rajat Sheikh Faruk G. Hayashibe Hidemasa Nakane Takaya Singh Inderjit 《Molecular and cellular biochemistry》1999,194(1-2):227-234
To determine whether the increased fatty acid -oxidation in the peroxisomes of diabetic rat liver is mediated by a common peroxisome proliferation mechanism, we measured the activation of long-chain (LC) and very long chain (VLC) fatty acids catalyzed by palmitoyl CoA ligase (PAL) and lignoceryl CoA ligase and oxidation of LC (palmitic acid) and VLC (lignoceric acid) fatty acids by isotopic methods. Immunoblot analysis of acyl-CoA oxidase (ACO), and Northern blot analysis of peroxisome proliferator-activated receptor (PPAR-), ACO, and PAL were also performed. The PAL activity increased in peroxisomes and mitochondria from the liver of diabetic rats by 2.6-fold and 2.1-fold, respectively. The lignoceroyl-CoA ligase activity increased by 2.6-fold in diabetic peroxisomes. Palmitic acid oxidation increased in the diabetic peroxisomes and mitochondria by 2.5-fold and 2.7-fold, respectively, while lignoceric acid oxidation increased by 2.0-fold in the peroxisomes. Immunoreactive ACO protein increased by 2-fold in the diabetic group. The mRNA levels for PPAR-, ACO and PAL increased 2.9-, 2.8- and 1.6-fold, respectively, in the diabetic group. These results suggest that the increased supply of fatty acids to liver in diabetic state stimulates the expression of PPAR- and its target genes responsible for the metabolism of fatty acids. 相似文献
3.
van Roermund CW Visser WF Ijlst L Waterham HR Wanders RJ 《Biochimica et biophysica acta》2011,1811(3):148-152
The gene mutated in X-linked adrenoleukodystrophy (X-ALD) codes for the HsABCD1 protein, also named ALDP, which is a member of the superfamily of ATP-binding cassette (ABC) transporters and required for fatty acid transport across the peroxisomal membrane. Although a defective HsABCD1 results in the accumulation of very long-chain fatty acids in plasma of X-ALD patients, there is still no direct biochemical evidence that HsABCD1 actually transports very long-chain fatty acids. We used the yeast Saccharomyces cerevisiae to study the transport of fatty acids across the peroxisomal membrane. Our earlier work showed that in yeast the uptake of fatty acids into peroxisomes may occur via two routes, either as (1.) free fatty acid or as (2.) acyl-CoA ester. The latter route involves the two peroxisomal half-ABC transporters, Pxa1p and Pxa2p, which form a heterodimeric complex in the peroxisomal membrane. We here report that the phenotype of the pxa1/pxa2Δ yeast mutant, i.e. impaired growth on oleate containing medium and deficient oxidation of oleic acid, cannot only be partially rescued by human ABCD1, but also by human ABCD2 (ALDRP), which indicates that HsABCD1 and HsABCD2 can both function as homodimers. Fatty acid oxidation studies in the pxa1/pxa2Δ mutant transformed with either HsABCD1 or HsABCD2 revealed clear differences suggesting that HsABCD1 and HsABCD2 have distinct substrate specificities. Indeed, full rescue of beta-oxidation activity in cells expressing human ABCD2 was observed with C22:0 and different unsaturated very long-chain fatty acids including C24:6 and especially C22:6 whereas in cells expressing HsABCD1 rescue of beta-oxidation activity was best with C24:0 and C26:0 as substrates. 相似文献
4.
Juan Suárez Patricia Rivera Sergio Arrabal Ana Crespillo Antonia Serrano Elena Baixeras Francisco J. Pavón Manuel Cifuentes Rubén Nogueiras Joan Ballesteros Carlos Dieguez Fernando Rodríguez de Fonseca 《Disease models & mechanisms》2014,7(1):129-141
β-adrenergic receptor activation promotes brown adipose tissue (BAT) β-oxidation and thermogenesis by burning fatty acids during uncoupling respiration. Oleoylethanolamide (OEA) can inhibit feeding and stimulate lipolysis by activating peroxisome proliferator-activating receptor-α (PPARα) in white adipose tissue (WAT). Here we explore whether PPARα activation potentiates the effect of β3-adrenergic stimulation on energy balance mediated by the respective agonists OEA and . The effect of this pharmacological association on feeding, thermogenesis, β-oxidation, and lipid and cholesterol metabolism in epididymal (e)WAT was monitored. CL316243 (1 mg/kg) and OEA (5 mg/kg) co-administration over 6 days enhanced the reduction of both food intake and body weight gain, increased the energy expenditure and reduced the respiratory quotient (VCO2/VO2). This negative energy balance agreed with decreased fat mass and increased BAT weight and temperature, as well as with lowered plasma levels of triglycerides, cholesterol, nonessential fatty acids (NEFAs), and the adipokines leptin and TNF-α. Regarding eWAT, CL316243 and OEA treatment elevated levels of the thermogenic factors PPARα and UCP1, reduced p38-MAPK phosphorylation, and promoted brown-like features in the white adipocytes: the mitochondrial (Cox4i1, Cox4i2) and BAT (Fgf21, Prdm16) genes were overexpressed in eWAT. The enhancement of the fatty-acid β-oxidation factors Cpt1b and Acox1 in eWAT was accompanied by an upregulation of de novo lipogenesis and reduced expression of the unsaturated-fatty-acid-synthesis enzyme gene, Scd1. We propose that the combination of β-adrenergic and PPARα receptor agonists promotes therapeutic adipocyte remodelling in eWAT, and therefore has a potential clinical utility in the treatment of obesity.KEY WORDS: CL316243Peroxisome proliferator-activated receptor alpha, β3-adrenergic receptor, Thermogenesis, β-oxidation, Adipocyte 相似文献
5.
Bo Wang Liping Zhu Shaohua Sui Caixia Sun Haiping Jiang Donghui Ren 《Biochemical and biophysical research communications》2014
Cilostazol is a drug licensed for the treatment of intermittent claudication. Its main action is to elevate intracellular levels of cyclic monophosphate (cAMP) by inhibiting the activity of type III phosphodiesterase, a cAMP-degrading enzyme. The effects of cilostazol on fatty acid oxidation (FAO) are as yet unknown. In this study, we report that cilostazol can elevate complete FAO and decrease both triacylglycerol (TAG) accumulation and TAG secretion. This use of cilostazol treatment increases expression of PGC-1α and, subsequently, its target genes, such as ERRα, NOR1, CD36, CPT1, MCAD, and ACO. Expression of these factors is linked to fatty acid β-oxidation but this effect is inhibited by H-89, a specific inhibitor of the PKA/CREB pathway. Importantly, knockdown of PGC-1α using siRNA abolished the effects of cilostazol in fatty acid oxidation (FAO) and TAG metabolism. These findings suggested that the PKA/CREB/PGC-1α pathway plays a critical role in cilostazol-induced fatty acid oxidation and TAG metabolism. 相似文献
6.
《Comparative biochemistry and physiology. B, Comparative biochemistry》1994,107(2-3):281-292
Hepatic peroxisomal β-oxidation rates were compared in liver homogenates from cows and rats during different nutritional and physiological states. Peroxisomal oxidation in liver homogenates from cows represented 50% and 77% of the total capacity for the initial cycle of β-oxidation of palmitate and octanoate, respectively, but only 26% and 65% for rats. Lactation or food deprivation did not alter rates of hepatic peroxisomal β-oxidation of palmitate or octanoate in cows. Fasting and clofibrate treatment increased rates of total and peroxisomal β-oxidation of palmitate and octanoate in rat liver. 相似文献
7.
Malika Chegary Heleen te Brinke Jos P.N. Ruiter Frits A. Wijburg Maria S.K. Stoll Paul E. Minkler Michel van Weeghel Horst Schulz Charles L. Hoppel Ronald J.A. Wanders Sander M. Houten 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2009,1791(8):806-815
Several mouse models for mitochondrial fatty acid β-oxidation (FAO) defects have been developed. So far, these models have contributed little to our current understanding of the pathophysiology. The objective of this study was to explore differences between murine and human FAO. Using a combination of analytical, biochemical and molecular methods, we compared fibroblasts of long chain acyl-CoA dehydrogenase knockout (LCAD−/−), very long chain acyl-CoA dehydrogenase knockout (VLCAD−/−) and wild type mice with fibroblasts of VLCAD-deficient patients and human controls. We show that in mice, LCAD and VLCAD have overlapping and distinct roles in FAO. The absence of VLCAD is apparently fully compensated, whereas LCAD deficiency is not. LCAD plays an essential role in the oxidation of unsaturated fatty acids such as oleic acid, but seems redundant in the oxidation of saturated fatty acids. In strong contrast, LCAD is neither detectable at the mRNA level nor at the protein level in men, making VLCAD indispensable in FAO. Our findings open new avenues to employ the existing mouse models to study the pathophysiology of human FAO defects. 相似文献
8.
Liyan Zhang Wendy KeungVictor Samokhvalov Wei WangGary D. Lopaschuk 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2010,1801(1):1-22
Fatty acids are a major fuel source used to sustain contractile function in heart and oxidative skeletal muscle. To meet the energy demands of these muscles, the uptake and β-oxidation of fatty acids must be coordinately regulated in order to ensure an adequate, but not excessive, supply for mitochondrial β-oxidation. However, imbalance between fatty acid uptake and β-oxidation has the potential to contribute to muscle insulin resistance. The action of insulin is initiated by binding to its receptor and activation of the intrinsic protein tyrosine kinase activity of the receptor, resulting in the initiation of an intracellular signaling cascade that eventually leads to insulin-mediated alterations in a number of cellular processes, including an increase in glucose transport. Accumulation of fatty acids and lipid metabolites (such as long chain acyl CoA, diacylglycerol, triacylglycerol, and/or ceramide) can lead to alterations in this insulin signaling pathway. An imbalance between fatty acid uptake and oxidation is believed to be responsible for this lipid accumulation, and is thought to be a major cause of insulin resistance in obesity and diabetes, due to lipid accumulation and inhibition of one or more steps in the insulin-signaling cascade. As a result, decreasing muscle fatty acid uptake can improve insulin sensitivity. However, the potential role of increasing fatty acid β-oxidation in the heart or skeletal muscle in order to prevent cytoplasmic lipid accumulation and decrease insulin resistance is controversial. While increased fatty acid β-oxidation may lower cytoplasmic lipid accumulation, increasing fatty acid β-oxidation can decrease muscle glucose metabolism, and incomplete fatty acid oxidation has the potential to also contribute to insulin resistance. In this review, we discuss the proposed mechanisms by which alterations in fatty acid uptake and oxidation contribute to insulin resistance, and how targeting fatty acid uptake and oxidation is a potential therapeutic approach to treat insulin resistance. 相似文献
9.
Mitochondria provide the main source of energy to eukaryotic cells, oxidizing fats and sugars to generate ATP. Mitochondrial fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are two metabolic pathways which are central to this process. Defects in these pathways can result in diseases of the brain, skeletal muscle, heart and liver, affecting approximately 1 in 5000 live births. There are no effective therapies for these disorders, with quality of life severely reduced for most patients. The pathology underlying many aspects of these diseases is not well understood; for example, it is not clear why some patients with primary FAO deficiencies exhibit secondary OXPHOS defects. However, recent findings suggest that physical interactions exist between FAO and OXPHOS proteins, and that these interactions are critical for both FAO and OXPHOS function. Here, we review our current understanding of the interactions between FAO and OXPHOS proteins and how defects in these two metabolic pathways contribute to mitochondrial disease pathogenesis. 相似文献
10.
Youssef Jihan A. Song Won O. Badr Mostafa Z. 《Molecular and cellular biochemistry》1997,169(1-2):37-42
Growth hormone (GH) exerts acute insulin-like effects, such as increased lipogenesis and inhibition of catecholamine-induced lipolysis, in rat adipocytes that have not been exposed to GH during the preceding three hours. We found that OPC3911, a highly specific inhibitor of the cGMP-inhibited cAMP phosphodiesterase, completely blocked the antilipolytic but not the lipogenic effect of GH. This indicates that the antilipolytic effect of GH is mediated through activation of this phosphodiesterase leading to reduction of cAMP levels in the same manner as has been shown for insulin. 相似文献
11.
Hong Li Seiji Fukuda Yuki Hasegawa Jamiyan Purevsuren Hironori Kobayashi Yuichi Mushimoto Seiji Yamaguchi 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2010,878(20):1669-1672
Mitochondrial fatty acids β-oxidation disorder (FAOD) has become popular with development of tandem mass spectrometry (MS/MS) and enzymatic evaluation techniques. FAOD occasionally causes acute encephalopathy or even sudden death in children. On the other hand, hyperpyrexia may also trigger severe seizures or encephalopathy, which might be caused by the defects of fatty acid β-oxidation (FAO). We investigated the effect of heat stress on FAO to determine the relationship between serious febrile episodes and defect in β-oxidation of fatty acid in children. Fibroblasts from healthy control and children with various FAODs, were cultured in the medium loaded with unlabelled palmitic acid for 96 h at 37 °C or 41 °C. Acylcarnitine (AC) profiles in the medium were determined by MS/MS, and specific ratios of ACs were calculated. Under heat stress (at 41 °C), long-chain ACs (C12, C14, or C16) were increased, while medium-chain ACs (C6, C8, or C10) were decreased in cells with carnitine palmitoyl transferase II deficiency, very-long-chain acyl-CoA dehydrogenase deficiency and mitochondrial trifunctional protein deficiency, whereas AC species from short-chain (C4) to long-chain (C16) were barely affected in medium-chain acyl-CoA dehydrogenase and control. While long-chain ACs (C12–C16) were significantly elevated, short to medium-chain ACs (C4–C10) were reduced in multiple acyl-CoA dehydrogenase deficiency. These data suggest that patients with long-chain FAODs may be more susceptible to heat stress compared to medium-chain FAOD or healthy control and that serious febrile episodes may deteriorate long-chain FAO in patients with long-chain FAODs. 相似文献
12.
Campos LB Gilglioni EH Garcia RF Brito Mdo N Natali MR Ishii-Iwamoto EL Salgueiro-Pagadigorria CL 《Free radical biology & medicine》2012,53(4):680-689
The aim of this work was to evaluate the effects of therapeutic doses of Cimicifuga racemosa on cardiovascular parameters and on liver lipid metabolism and redox status in an animal model of estrogen deficiency associated with hypertension, a condition that could make the liver more vulnerable to drug-induced injuries. Female Wistar rats were subjected to the surgical procedures of bilateral ovariectomy (OVX) and induction of renovascular hypertension (two-kidneys, one-clip; 2K1C). These animals (OVX + 2K1C) were treated with daily doses of a C. racemosa extract, using a dose that is similar to that recommended to postmenopausal women (0.6mg/kg), over a period of 15 days. The results were compared to those of untreated OVX + 2K1C, OVX, and control rats. The treatment with C. racemosa caused a significant reduction in blood pressure. In the liver, treatment did not prevent the development of steatosis, and it reduced the mitochondrial and peroxisomal capacity to oxidize octanoyl-CoA compared to the untreated animals. In addition, C. racemosa caused numerous undesirable effects on the liver redox status: it increased the mitochondrial reactive oxygen species generation, an event that was not accompanied by an increase in the activity of superoxide dismutase, and it induced a decrease in peroxisomal catalase activity. Although the reduced glutathione content had not been affected, a phenomenon that probably reflected the restoration of glucose-6-phosphate dehydrogenase activity by C. racemosa, oxidative damage was evidenced by the elevated level of thiobarbituric acid-reactive substances found in the liver of treated animals. 相似文献
13.
The molecular mechanisms underlying protein turnover and enzyme regulation in the peroxisomal matrix remain largely unknown. Trypsin domain-containing 1 (Tysnd1) and peroxisomal Lon protease (PsLon) are newly identified peroxisomal matrix proteins that harbor both a serine protease-like domain and a peroxisome-targeting signal 1 (PTS1) sequence. Tysnd1 processes several PTS1-containing proteins and cleaves N-terminal presequences from PTS2-containing protein precursors. Here we report that knockdown of Tysnd1, but not PsLon, resulted in accumulation of endogenous β-oxidation enzymes in their premature form. The protease activity of Tysnd1 was inactivated by intermolecular self-conversion of the 60-kDa form to 15- and 45-kDa chains, which were preferentially degraded by PsLon. Peroxisomal β-oxidation of a very long fatty acid was significantly decreased by knockdown of Tysnd1 and partially lowered by PsLon knockdown. Taken together, these data suggest that Tysnd1 is a key regulator of the peroxisomal β-oxidation pathway via proteolytic processing of β-oxidation enzymes. The proteolytic activity of oligomeric Tysnd1 is in turn controlled by self-cleavage of Tysnd1 and degradation of Tysnd1 cleavage products by PsLon. 相似文献
14.
Babidge Wendy Millard Susan Roediger William 《Molecular and cellular biochemistry》1998,181(1-2):117-124
The disease process of ulcerative colitis (UC) is associated with a block in -oxidation of short chain fatty acid in colonic epithelial cells which can be reproduced by exposure of cells to sulfides. The aim of the current work was to assess the level in the -oxidation pathway at which sulfides might be inhibitory in human colonocytes. Isolated human colonocytes from cases without colitis (n = 12) were exposed to sulfide (1.5 mM) in the presence or absence of exogenous CoA and ATP. Short chain acyl-CoA esters were measured by a high performance liquid chromatographic assay. 14CO2 generation was measured from [1-14C]butyrate and [6-14C]glucose. 14CO2 from butyrate was significantly reduced (p < 0.001) by sulfide. When colonocytes were incubated with hydrogen sulfide in the presence of CoA and ATP, butyryl-CoA concentration was increased (p < 0.01), while crotonyl-CoA (p < 0.01) and acetyl-CoA (p < 0.01) concentrations were decreased. These results show that sulfides inhibit short chain acyl-CoA dehydrogenase. As oxidation of n-butyrate governs the epithelial barrier function of colonocytes the functional activity of short chain acyl-CoA dehydrogenase may be critical in maintaining colonic mucosal integrity. Maintaining the functional activity of dehydrogenases could be an important determinant in the expression of ulcerative colitis. 相似文献
15.
Oxidative phosphorylation (OxPhos) is functional and sustains tumor proliferation in several cancer cell types. To establish whether mitochondrial β-oxidation of free fatty acids (FFAs) contributes to cancer OxPhos functioning, its protein contents and enzyme activities, as well as respiratory rates and electrical membrane potential (ΔΨm) driven by FFA oxidation were assessed in rat AS-30D hepatoma and liver (RLM) mitochondria. Higher protein contents (1.4–3 times) of β-oxidation (CPT1, SCAD) as well as proteins and enzyme activities (1.7–13-times) of Krebs cycle (KC: ICD, 2OGDH, PDH, ME, GA), and respiratory chain (RC: COX) were determined in hepatoma mitochondria vs. RLM. Although increased cholesterol content (9-times vs. RLM) was determined in the hepatoma mitochondrial membranes, FFAs and other NAD-linked substrates were oxidized faster (1.6–6.6 times) by hepatoma mitochondria than RLM, maintaining similar ΔΨm values. The contents of β-oxidation, KC and RC enzymes were also assessed in cells. The mitochondrial enzyme levels in human cervix cancer HeLa and AS-30D cells were higher than those observed in rat hepatocytes whereas in human breast cancer biopsies, CPT1 and SCAD contents were lower than in human breast normal tissue. The presence of CPT1 and SCAD in AS-30D mitochondria and HeLa cells correlated with an active FFA utilization in HeLa cells. Furthermore, the β-oxidation inhibitor perhexiline blocked FFA utilization, OxPhos and proliferation in HeLa and other cancer cells. In conclusion, functional mitochondria supported by FFA β-oxidation are essential for the accelerated cancer cell proliferation and hence anti-β-oxidation therapeutics appears as an alternative promising approach to deter malignant tumor growth. 相似文献
16.
Iwai M Kanno H Senba I Nakaoka H Moritani T Horiuchi M 《Biochemical and biophysical research communications》2011,(1):403-126
The effect of the PPARγ agonistic action of an AT1 receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPARγ in white adipose tissue and the DNA-binding activity of PPARγ in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPARγ and improved adipose tissue dysfunction including insulin resistance. 相似文献
17.
18.
《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2019,1864(11):1619-1628
Microorganisms in animal gut produce unusual fatty acids from the ingested diet. Two types of hydroxy fatty acids (HFAs), 10-hydroxy-cis-12-octadecenoic acid (HYA) and 10-hydroxy-octadecanoic acid (HYB), are linoleic acid (LA) metabolites produced by Lactobacillus plantarum. In this study, we investigated the metabolism of these HFAs in mammalian cells. When Chinese hamster ovary (CHO) cells were cultured with HYA, approximately 50% of the supplemented HYA disappeared from the dish within 24 h. On the other hand, the amount of HYA that disappeared from the dish of peroxisome (PEX)-deficient CHO cells was lower than 20%. Significant amounts of C2– and C4-chain-shortened metabolites of HYA were detected in culture medium of HYA-supplemented CHO cells, but not in medium of PEX-deficient cells. These results suggested that peroxisomal β-oxidation is involved in the disappearance of HYA. The PEX-dependent disappearance was observed in the experiment with HYB, but not with LA. We also found that HYA treatment up-regulates peroxisomal β-oxidation activity of human gastric MKN74 cells and intestinal Caco-2 cells. These results indicate a possibility that HFAs produced from gut bacteria affect lipid metabolism of host via modulation of peroxisomal β-oxidation activity. 相似文献
19.
《Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism》1995,1254(3):319-325
We have reported that peroxisomal β-oxidation has an anabolic function, supplying acetyl-CoA for biosynthesis of bile acids and phospholipids. Here we deal with its role in the biosynthesis of the subclasses of ethanolamine- and choline-containing phosphoglycerides (EPG, CPG, respectively). Rats were fed for 2 weeks on chow containing 0.25% clofibrate, which inhibits cholesterol and bile acid biosyntheses, but stimulates peroxisomal β-oxidation. [1-14C]Lignoceric acid, which is exclusively degraded by peroxisomal β-oxidation to acetyl-CoA, was intravenously injected, and 3 h later the rats were killed. The EPG-rich and CPG-rich fractions were prepared from the liver. When they were treated with phospholipase A2, the radioactivity was predominantly recovered in the 1-radyl group. The radioactivity in EPG was easily dissociated with HCl vapor, and the lipid containing radioactivity was found to be a fatty aldehyde mixture consisting of steary aldehyde (approx. 58%) palmityl aldehyde (approx. 40%) and oleyl aldehyde (approx. 2%). Thus, in the case of EPG, acetyl-CoA from peroxisomal β-oxidation is incorporated mainly into the 1-alkenyl group of ethanolamine plasmalogen. The radioactivity in CPG, however, was found in fatty alcohol (formed from fatty acid), but not in alkylglycerol after reduction of the fraction with Vitride. Thus, in the case of CPG, acetyl-CoA from peroxisomal β-oxidation is exclusively incorporated into the 1-acyl group of diacyl glycerophosphocholine, but not into the 1-alkyl group. The above results were supported by the results of phospholipase C treatment. The above data indicate that peroxisomal β-oxidation plays a role in supplying acetyl-CoA for 1-alkenyl group of plasmalogen-type phospholipid, but this channel may open only to synthesis of EPG, and almost not to CPG. 相似文献
20.
Duffaut C Bour S Prévot D Marti L Testar X Zorzano A Carpéné C 《Journal of physiology and biochemistry》2006,62(2):101-111
Beta3-adrenergic agonists are well-recognited to promote lipid mobilisation and adipose tissue remodeling in rodents, leading to multilocular fat cells enriched in mitochondria. However, effects of beta3-adrenergic agonists on glucose transport are still controversial. In this work, we studied in white adipose tissue (WAT) the influence of sustained beta3-adrenergic stimulation on the glucose transport and on the mitochondrial monoamine oxidase (MAO) activity. As one-week administration of CL 316243 (CL, 1 mg/kg/d) induces beta-adrenergic desensitization in rat but not in guinea pig adipocytes, attention was paid to compare these models. When expressing glucose uptake as nmoles of 2-deoxyglucose/100 mg cell lipids, maximally stimulated uptake was increased in adipocytes of WAT from treated rats but not from treated guinea pigs. However, basal hexose uptake was also increased in CL-treated rats and, as a consequence, the dose-dependent curves for insulin stimulation were similar in control and CL-treated rats when expressed as fold increase over basal. Insulin-induced lipogenesis was unchanged in rat or guinea pig adipocytes after CL-treatment. The glucose carriers GLUT4 and corresponding mRNA were increased in subcutaneous WAT or in brown adipose tissue (BAT) but not in visceral WAT or muscles of CL-treated rats. There was an increase of MAO activity in WAT and BAT, but not in liver, of CL-treated rats while no change was detected in guinea pigs. These findings show that only rat adipocytes, which are beta3-adrenergic-responsive, respond to chronic beta3-AR agonist by an increase of GLUT4 content and MAO activity, despite a desensitization of all beta-adrenoceptor subtypes. 相似文献