首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Organic anions are taken up from the blood into proximal tubule cells by organic anion transporters 1 and 3 (OAT1 and OAT3) in exchange for dicarboxylates. The released dicarboxylates are recycled by the sodium dicarboxylate cotransporter 3 (NaDC3). In this study, we tested the substrate specificities of human NaDC3, OAT1, and OAT3 to identify those dicarboxylates for which the three cooperating transporters have common high affinities. All transporters were stably expressed in HEK293 cells, and extracellularly added dicarboxylates were used as inhibitors of [(14)C]succinate (NaDC3), p-[(3)H]aminohippurate (OAT1), or [(3)H]estrone-3-sulfate (OAT3) uptake. Human NaDC3 was stably expressed as proven by immunochemical methods and by sodium-dependent uptake of succinate (K(0.5) for sodium activation, 44.6 mM; Hill coefficient, 2.1; K(m) for succinate, 18 μM). NaDC3 was best inhibited by succinate (IC(50) 25.5 μM) and less by α-ketoglutarate (IC(50) 69.2 μM) and fumarate (IC(50) 95.2 μM). Dicarboxylates with longer carbon backbones (adipate, pimelate, suberate) had low or no affinity for NaDC3. OAT1 exhibited the highest affinity for glutarate, α-ketoglutarate, and adipate (IC(50) between 3.3 and 6.2 μM), followed by pimelate (18.6 μM) and suberate (19.3 μM). The affinity of OAT1 to succinate and fumarate was low. OAT3 showed the same dicarboxylate selectivity with ~13-fold higher IC(50) values compared with OAT1. The data 1) reveal α-ketoglutarate as a common high-affinity substrate of NaDC3, OAT1, and OAT3 and 2) suggest potentially similar molecular structures of the binding sites in OAT1 and OAT3 for dicarboxylates.  相似文献   

3.
Renal excretion of citrate, an inhibitor of calcium stone formation, is controlled mainly by reabsorption via the apical Na+-dicarboxylate cotransporter NaDC1 (SLC13A2) in the proximal tubule. Recently, it has been shown that the protein phosphatase calcineurin inhibitors cyclosporin A (CsA) and FK-506 induce hypocitraturia, a risk factor for nephrolithiasis in kidney transplant patients, but apparently through urine acidification. This suggests that these agents up-regulate NaDC1 activity. Using the Xenopus lævis oocyte and HEK293 cell expression systems, we examined first the effect of both anti-calcineurins on NaDC1 activity and expression. While FK-506 had no effect, CsA reduced NaDC1-mediated citrate transport by lowering heterologous carrier expression (as well as endogenous carrier expression in HEK293 cells), indicating that calcineurin is not involved. Given that CsA also binds specifically to cyclophilins, we determined next whether such proteins could account for the observed changes by examining the effect of selected cyclophilin wild types and mutants on NaDC1 activity and cyclophilin-specific siRNA. Interestingly, our data show that the cyclophilin isoform B is likely responsible for down-regulation of carrier expression by CsA and that it does so via its chaperone activity on NaDC1 (by direct interaction) rather than its rotamase activity. We have thus identified for the first time a regulatory partner for NaDC1, and have gained novel mechanistic insight into the effect of CsA on renal citrate transport and kidney stone disease, as well as into the regulation of membrane transporters in general.  相似文献   

4.
The Na+/dicarboxylate cotransporter (NaDC1) is involved in the absorption of citric acid cycle intermediates from the lumen of the renal proximal tubule and small intestine. The NaDC1 orthologues from human (h) and rabbit (rb) exhibit differences in citrate and cation transport properties. The citrate Km and sodium KNa values are much larger in human than rabbit NaDC1. Our previous study showed that transmembrane helices (TM) 7, 10, and 11 and associated loop regions contain the amino acids that are important in determining the differences in apparent citrate affinity, whereas TM10 and 11 determine differences in apparent sodium affinity. Chimera R10 (hNaDC1 with a substitution of TM10 and associated loop from rbNaDC1) contains only four amino acid differences between rb and hNaDC1. This chimera has similar apparent affinity for succinate and sodium as the wild-type rbNaDC1, and an intermediate Km for citrate. To identify individual residues in the TM10 region that determine functional differences between rb and hNaDC1, four mutants were made in which the rabbit sequence was substituted for that of the hNaDC1. Mutants with a serine or threonine at position 509 (or 512 in rbNaDC1) in TM10 have partial changes in Km for citrate and succinate but larger changes in apparent affinity for cations and substrate specificity for four-carbon dicarboxylates. The results show that the serine or threonine at position 509 (h) or 512 (rb) is the most important determinant of functional differences in apparent affinity for substrate and cations. Furthermore, the results suggest that the cation and substrate binding sites are located in close proximity to one another in NaDC1.  相似文献   

5.
Amino acid transporters (AATers) in the brush border of the apical plasma membrane (APM) of renal proximal tubule (PT) cells mediate amino acid transport (AAT). We found that the membrane-associated class I myosin myosin 1b (Myo1b) localized at the apical brush border membrane of PTs. In opossum kidney (OK) 3B/2 epithelial cells, which are derived from PTs, expressed rat Myo1b-GFP colocalized in patched microvilli with expressed mouse V5-tagged SIT1 (SIT1-V5), which mediates neutral amino acid transport in OK cells. Lentivirus-mediated delivery of opossum Myo1b-specific shRNA resulted in knockdown (kd) of Myo1b expression, less SIT1-V5 at the APM as determined by localization studies, and a decrease in neutral AAT as determined by radioactive uptake assays. Myo1b kd had no effect on Pi transport or noticeable change in microvilli structure as determined by rhodamine phalloidin staining. The studies are the first to define a physiological role for Myo1b, that of regulating renal AAT by modulating the association of AATers with the APM.  相似文献   

6.
It is generally assumed that phosphate (Pi) effluxes from proximal tubule cells by passive diffusion across the basolateral (BL) membrane. We explored the mechanism of BL Pi efflux in proximal tubule-like OK cells grown on permeable filters and then loaded with 32P. BL efflux of 32P was significantly stimulated (P < 0.05) by exposing the BL side of the monolayer to 12.5 mM Pi, to 10 mM citrate, or by acid-loading the cells, and was inhibited by exposure to 0.05 mM Pi or 25 mM HCO3; by contrast, BL exposure to high (8.4) pH, 40 mM K+, 140 mM Na gluconate (replacing NaCl), 10 mM lactate, 10 mM succinate, or 10 mM glutamate did not affect BL 32P efflux. These data are consistent with BL Pi efflux from proximal tubule-like cells occurring, in part, via an electro-neutral sodium-sensitive anion transporter capable of exchanging two moles of intracellular acidic H2PO4- for each mole of extracellular basic HPO4= or for citrate.  相似文献   

7.
Citric acid cycle intermediates are absorbed from the gastrointestinal tract through carrier-mediated mechanisms, although the transport pathways have not been clearly identified. This study examines the transport of citric acid cycle intermediates in the Caco-2 human colon carcinoma cell line, often used as a model of small intestine. Inulin was used as an extracellular volume marker instead of mannitol since the apparent volume measured with mannitol changed with time. The results show that Caco-2 cells contain at least three distinct transporters, including the Na+-dependent di- and tricarboxylate transporters, NaDC1 and NaCT, and one or more sodium-independent pathways, possibly involving organic anion transporters. Succinate transport is mediated mostly by Na+-dependent pathways, predominantly by NaDC1, but with some contribution by NaCT. RT-PCR and functional characteristics verified the expression of these transporters in Caco-2 cells. In contrast, citrate transport in Caco-2 cells occurs by a combination of Na+-independent pathways, possibly mediated by an organic anion transporter, and Na+-dependent mechanisms. The non-metabolizable dicarboxylate, methylsuccinate, is also transported by a combination of Na+-dependent and -independent pathways. In conclusion, we find that multiple pathways are involved in the transport of di- and tricarboxylates by Caco-2 cells. Since many of these pathways are not found in human intestine, this model may be best suited for studying Na+-dependent transport of succinate by NaDC1.  相似文献   

8.
A longevity gene called Indy (for 'I'm not dead yet'), with similarity to mammalian genes encoding sodium-dicarboxylate cotransporters, was identified in Drosophila melanogaster. Functional studies in Xenopus oocytes showed that INDY mediates the flux of dicarboxylates and citrate across the plasma membrane, but the specific transport mechanism mediated by INDY was not identified. To test whether INDY functions as an anion exchanger, we examined whether substrate efflux is stimulated by transportable substrates added to the external medium. Efflux of [14C]citrate from INDY-expressing oocytes was greatly accelerated by the addition of succinate to the external medium, indicating citrate-succinate exchange. The succinate-stimulated [14C]citrate efflux was sensitive to inhibition by DIDS (4,4'-di-isothiocyano-2,2'-disulphonic stilbene), as demonstrated previously for INDY-mediated succinate uptake. INDY-mediated efflux of [14C]citrate was also stimulated by external citrate and oxaloacetate, indicating citrate-citrate and citrate-oxaloacetate exchange. Similarly, efflux of [14C]succinate from INDY-expressing oocytes was stimulated by external citrate, alpha-oxoglutarate and fumarate, indicating succinate-citrate, succinate-alpha-oxoglutarate and succinate-fumarate exchange respectively. Conversely, when INDY-expressing Xenopus oocytes were loaded with succinate and citrate, [14C]succinate uptake was markedly stimulated, confirming succinate-succinate and succinate-citrate exchange. Exchange of internal anion for external citrate was markedly pH(o)-dependent, consistent with the concept that citrate is co-transported with a proton. Anion exchange was sodium-independent. We conclude that INDY functions as an exchanger of dicarboxylate and tricarboxylate Krebs-cycle intermediates. The effect of decreasing INDY activity, as in the long-lived Indy mutants, may be to alter energy metabolism in a manner that favours lifespan extension.  相似文献   

9.
The Na(+)/dicarboxylate cotransporter of the renal proximal tubule, NaDC-1, reabsorbs Krebs cycle intermediates, such as succinate and citrate, from the tubular filtrate. Although long-term regulation of this transporter by chronic metabolic acidosis and K(+) deficiency is well documented, there is no information on acute regulation of NaDC-1. In the present study, the transport of succinate in Xenopus oocytes expressing NaDC-1 was inhibited up to 95% by two activators of protein kinase C, phorbol 12-myristate, 13-acetate (PMA) and sn-1, 2-dioctanoylglycerol (DOG). Activation of protein kinase A had no effect on NaDC-1 activity. The inhibition of NaDC-1 transport by PMA was dose-dependent, and could be prevented by incubation of the oocytes with staurosporine. Mutations of the two consensus protein kinase C phosphorylation sites in NaDC-1 did not affect inhibition by PMA. The inhibitory effects of PMA were partially prevented by cytochalasin D, which disrupts microfilaments and endocytosis. PMA treatment was also associated with a decrease of approximately 30% in the amount of NaDC-1 protein found on the plasma membrane. We conclude that the inhibition of NaDC-1 transport activity by PMA occurs by a combination of endocytosis and inhibition of transport activity.  相似文献   

10.
Sodium-dependent dicarboxylate transporters located in the basolateral membrane (NaDC-3) of renal proximal tubule cells maintain the driving force for exchange of organic anions and drugs against alpha-ketoglutarate via organic anion transporters OAT1 and OAT3. So far, information on direct interaction of drugs with the cloned NaDC-3 was missing. Here we tested the interaction of non-steroidal anti-inflammatory drugs (NSAIDs) and benzylpenicillin with NaDC-3 cloned from winter flounder (fNaDC-3) and human (hNaDC-3) kidneys. Flufenamate and benzylpenicillin inhibited [14C]succinate uptake in oocytes expressing fNaDC-3. Flufenamate elicited Na(+)-dependent currents in oocytes expressing fNaDC-3 with a reversal potential around -60 mV. Raising extracellular K+ concentration depolarized fNaDC3-expressing oocytes more in the presence of flufenamate than in its absence, an effect not seen with water-injected control oocytes. These findings suggest that flufenamate via interaction with fNaDC-3 increased the K+ conductance. Acetylsalicylate, indomethacin, and salicylate showed small potential-dependent inward currents in fNaDC-3 but not in hNaDC-3 expressing oocytes. Benzylpenicillin induced voltage-dependent inward currents which were Na(+)-dependent in oocytes expressing fNaDC-3. The currents were, however, much smaller than those induced by succinate, reflecting probably a low fit of the monovalent benzylpenicillin to the dicarboxylate binding site. The data show hitherto unknown effects of monovalent anionic drugs on a transporter for divalent di- and tricarboxylates.  相似文献   

11.
Parathyroid hormone enhances the formation of cAMP and decreases the Na+-dependent uptake of phosphate in cultured renal cells derived from the American opossum (OK cells). Epinephrine, acting as an alpha 2-adrenergic agonist, inhibits the PTH-induced synthesis of cAMP by a pertussis toxin-sensitive mechanism and blunts the inhibition of phosphate transport by PTH. Na+-dependent alpha-methylglucoside and Na+ uptakes by the cells are unaffected by PTH and epinephrine. These findings suggest that alpha 2-adrenergic agonists may selectively modulate PTH-sensitive phosphate transport in the renal proximal tubule.  相似文献   

12.
Citric acid cycle intermediates are absorbed from the gastrointestinal tract through carrier-mediated mechanisms, although the transport pathways have not been clearly identified. This study examines the transport of citric acid cycle intermediates in the Caco-2 human colon carcinoma cell line, often used as a model of small intestine. Inulin was used as an extracellular volume marker instead of mannitol since the apparent volume measured with mannitol changed with time. The results show that Caco-2 cells contain at least three distinct transporters, including the Na+-dependent di- and tricarboxylate transporters, NaDC1 and NaCT, and one or more sodium-independent pathways, possibly involving organic anion transporters. Succinate transport is mediated mostly by Na+-dependent pathways, predominantly by NaDC1, but with some contribution by NaCT. RT-PCR and functional characteristics verified the expression of these transporters in Caco-2 cells. In contrast, citrate transport in Caco-2 cells occurs by a combination of Na+-independent pathways, possibly mediated by an organic anion transporter, and Na+-dependent mechanisms. The non-metabolizable dicarboxylate, methylsuccinate, is also transported by a combination of Na+-dependent and -independent pathways. In conclusion, we find that multiple pathways are involved in the transport of di- and tricarboxylates by Caco-2 cells. Since many of these pathways are not found in human intestine, this model may be best suited for studying Na+-dependent transport of succinate by NaDC1.  相似文献   

13.
The effects of phorbol esters and diacylglycerol on phosphate uptake in opossum kidney (OK) cells were investigated to assess the possible role of Ca2+-activated, phospholipid dependent protein kinase (protein kinase C) on renal phosphate handling. OK cells are widely used as a model of proximal renal tubular cells and are reported to possess a Na+-dependent phosphate transport system. Phorbol-12,13-dibutyrate (PDBu) inhibited phosphate uptake. This inhibitory effect was synergistically enhanced with A23187. 4 beta-phorbol 12,13-didecanoate inhibited phosphate uptake, while 4 alpha-phorbol 12,13-didecanoate did not. 1-oleoyl-2-acetyl-glycerol (OAG), a synthetic diacylglycerol, also exhibited an inhibitory effect on phosphate uptake. These data suggest the possible involvement of protein kinase C in proximal renal tubular phosphate transport.  相似文献   

14.
The Na(+)/dicarboxylate cotransporters from mouse (mNaDC1) and rabbit (rbNaDC1) differ in their ability to handle adipate, a six-carbon terminal dicarboxylic acid. The mNaDC1 and rbNaDC1 amino acid sequences are 75% identical. The rbNaDC1 does not transport adipate and only succinate produced inward currents under two-electrode voltage clamp. In contrast, oocytes expressing mNaDC1 had adipate-dependent inward currents that were about 60% of those induced by succinate. In order to identify domains involved in adipate transport, we examined the functional properties of a series of chimeric transporters made between mouse and rabbit NaDC1. We find that multiple transmembrane helices (TM), particularly TM 8, 9, and 10, are involved in adipate transport. In TM 10 there is only one amino acid difference between the two proteins, corresponding to Ala-504 in mouse and Ser-512 in rabbit NaDC1. The mNaDC1-A504S mutant had decreased adipate-dependent currents relative to succinate-dependent currents and an increase in the K(0.5) for both succinate and glutarate. We conclude that multiple amino acids from TM 8, 9 and 10 contribute to the transport of adipate in NaDC1. Furthermore, Ala-504 in TM 10 is an important determinant of K(0.5) for both adipate and succinate.  相似文献   

15.
Citric acid cycle intermediates, including succinate and citrate, are absorbed across the apical membrane by the NaDC1 Na+/dicarboxylate cotransporter located in the kidney and small intestine. The secondary structure model of NaDC1 contains 11 transmembrane helices (TM). TM7 was shown previously to contain determinants of citrate affinity, and Arg-349 at the extracellular end of the helix is required for transport. The present study involved cysteine scanning mutagenesis of 26 amino acids in TM7 and the associated loops. All of the mutants were well expressed on the plasma membrane, but many had low or no transport activity: 6 were inactive and 7 had activity less than 25% of the parental. Three of the mutants had notable changes in functional properties. F336C had increased transport activity due to an increased Vmax for succinate. The conserved residue F339C had very low transport activity and a change in substrate selectivity. G356C in the putative extracellular loop was the only cysteine mutant that was affected by the membrane-impermeant cysteine reagent, MTSET. However, direct labeling of G356C with MTSEA-biotin gave a weak signal, indicating that this residue is not readily accessible to more bulky reagents. The results suggest that the amino acids of TM7 are functionally important because their replacement by cysteine had large effects on transport activity. However, most of TM7 does not appear to be accessible to the extracellular fluid and is likely to be an outer helix in contact with the lipid bilayer.  相似文献   

16.
The LLC-PK1 cell line transports phosphate (Pi), glucose, and amino acids using carriers similar to those in proximal tubular cells. Others have reported that when monolayers reach confluence, hexose transport increases and activity of the A-amino acid transporter falls. The present study evaluates Pi uptake by two continuous cell lines derived from renal proximal tubule, and demonstrates that phosphate uptake falls sharply upon reaching confluence in LLC-PK1 cells but not in cultured opossum kidney (OK) cells. The fall in Pi uptake in LLC-PK1 cells at confluence represents a halving in Vmax for Na-dependent phosphate uptake (2.33 vs. 5.00 nmol/mg protein/5 min) without a change in Km (82 vs. 94 microM). Suppression of phosphate transport in confluent monolayers of LLC-PK1 cells is completely reversed by bringing the cells into suspension. As has been shown for the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA), exposure of monolayers to serum stimulates phosphate uptake, but unlike phorbol ester, serum does so without stimulating alanine uptake. OK cells differ from LLC-PK1 in that no change occurs in Pi uptake at confluence, although they resemble LLC-PK1 cells in that sugar uptake rises and alanine uptake falls at confluence. The different temporal patterns for Pi uptake in the two cell lines indicates that developmental change in the uptake of Pi is not linked to that of glucose or alanine.  相似文献   

17.
We have cloned and functionally characterized two Na(+)-coupled dicarboxylate transporters, namely ceNaDC1 and ceNaDC2, from Caenorhabditis elegans. These two transporters show significant sequence homology with the product of the Indy gene identified in Drosophila melanogaster and with the Na(+)-coupled dicarboxylate transporters NaDC1 and NaDC3 identified in mammals. In a mammalian cell heterologous expression system, the cloned ceNaDC1 and ceNaDC2 mediate Na(+)-coupled transport of various dicarboxylates. With succinate as the substrate, ceNaDC1 exhibits much lower affinity compared with ceNaDC2. Thus, ceNaDC1 and ceNaDC2 correspond at the functional level to the mammalian NaDC1 and NaDC3, respectively. The nadc1 and nadc2 genes are not expressed at the embryonic stage, but the expression is detectable all through the early larva stage to the adult stage. Tissue-specific expression pattern studies using a reporter gene fusion approach in transgenic C. elegans show that both genes are coexpressed in the intestinal tract, an organ responsible for not only the digestion and absorption of nutrients but also for the storage of energy in this organism. Independent knockdown of the function of these two transporters in C. elegans using the strategy of RNA interference suggests that NaDC1 is not associated with the regulation of average life span in this organism, whereas the knockdown of NaDC2 function leads to a significant increase in the average life span. Disruption of the function of the high affinity Na(+)-coupled dicarboxylate transporter NaDC2 in C. elegans may lead to decreased availability of dicarboxylates for cellular production of metabolic energy, thus creating a biological state similar to that of caloric restriction, and consequently leading to life span extension.  相似文献   

18.
The adipokine leptin and oncotic protein albumin are endocytosed in the proximal tubule via the scavenger receptor megalin. Leptin reduces megalin expression and activates cell signalling pathways that upregulate fibrotic protein expression. The aim of this study was to investigate if leptin uptake in proximal tubule cells was via the albumin-megalin endocytic complex. In immortalised proximal tubule Opossum kidney cells (OK) fluorescent leptin and albumin co-localised following 5 min exposure, however there was no co-localisation at 10, 20 and 30 min exposure. In OK cells, acute exposure to leptin for 2 h did not alter NHE3, ClC-5, NHERF1 and NHERF2 mRNA. However, acute leptin exposure increased NHERF2 protein expression in proximal tubule cells. In OK cells, immunoprecipitation experimentation indicated leptin did not bind to ClC-5. Leptin uptake in OK cells was enhanced by bafilomycin and ammonium chloride treatment, demonstrating that uptake was not dependent on lysosomal pH. Thus, it is likely that two pools of megalin exist in proximal tubule cells to facilitate separate uptake of leptin and albumin by endocytosis.  相似文献   

19.
There are multiple regulators of renal proximal tubule sodium-dependent phosphate (Na(+)-Pi) transport, including 1,25-dihydroxyvitamin D (1,25-Vit. D), parathyroid hormone (PTH), insulin-like growth factor 1 (IGF-1), and arachidonic acid (AA) and/or its metabolites. The purpose of our studies was to determine whether the effect of these factors on Pi transport is synergistic or antagonistic. The control solution or the substances were added independently or coincidentally to opossum kidney (OK) cells before incubation for 4 h. 1,25-Vit. D (10(-8) M) had no significant effect on Pi transport ( upward arrow6.8%; p = 0.8). PTH (10(-7) M) significantly inhibited Pi transport by 39.6% (p < 0.0001). IGF-1 (10(-8) M) stimulated Pi transport by 19.6% (p < 0.0001). The AA metabolite 20-HETE (10(-7) M) had no significant impact on Pi transport ( downward arrow6.4; p = 0.3). The combined effect of 1,25-Vit. D and PTH was no different from PTH alone (p = 0.2). Likewise, addition of either 1,25-Vit. D or 20-HETE to IGF-1 failed to affect the magnitude of the increase on Pi transport induced by IGF-1 alone (p = 0.4, p = 0.6, respectively). The combination of 20-HETE and PTH was not different from that observed with PTH alone (p = 0.9). We conclude that in OK cells, PTH inhibits whereas IGF-1 stimulates Pi transport into OK cells. The effects of each of these hormones are independent and unaffected by either 1,25-Vit. D or 20-HETE.  相似文献   

20.
The Na+/dicarboxylate cotransporters from mouse (mNaDC1) and rabbit (rbNaDC1) differ in their ability to handle adipate, a six-carbon terminal dicarboxylic acid. The mNaDC1 and rbNaDC1 amino acid sequences are 75% identical. The rbNaDC1 does not transport adipate and only succinate produced inward currents under two-electrode voltage clamp. In contrast, oocytes expressing mNaDC1 had adipate-dependent inward currents that were about 60% of those induced by succinate. In order to identify domains involved in adipate transport, we examined the functional properties of a series of chimeric transporters made between mouse and rabbit NaDC1. We find that multiple transmembrane helices (TM), particularly TM 8, 9, and 10, are involved in adipate transport. In TM 10 there is only one amino acid difference between the two proteins, corresponding to Ala-504 in mouse and Ser-512 in rabbit NaDC1. The mNaDC1-A504S mutant had decreased adipate-dependent currents relative to succinate-dependent currents and an increase in the K0.5 for both succinate and glutarate. We conclude that multiple amino acids from TM 8, 9 and 10 contribute to the transport of adipate in NaDC1. Furthermore, Ala-504 in TM 10 is an important determinant of K0.5 for both adipate and succinate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号